




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
第2章有理數(shù)的運算全章復(fù)習與測試
0【知識梳理】
—.有理數(shù)的加法
(1)有理數(shù)加法法則:
①同號相加,取相同符號,并把絕對值相加.
②絕對值不等的異號加減,取絕對值較大的加數(shù)符號,并用較大的絕對值減去較小的絕對值.互為相反數(shù)的
兩個數(shù)相加得0.
③一個數(shù)同0相加,仍得這個數(shù).
(在進行有理數(shù)加法運算時,首先判斷兩個加數(shù)的符號:是同號還是異號,是否有0.從而確定用那一條法
則.在應(yīng)用過程中,要牢記“先符號,后絕對值”.)
(2)相關(guān)運算律
交換律:a+b—b+a;結(jié)合律(a+b)+c—a+(b+c).
二.有理數(shù)的減法
(1)有理數(shù)減法法則:減去一個數(shù),等于加上這個數(shù)的相反數(shù).即:a-b=a+(-b)
(2)方法指引:
①在進行減法運算時,首先弄清減數(shù)的符號;
②將有理數(shù)轉(zhuǎn)化為加法時,要同時改變兩個符號:一是運算符號(減號變加號);二是減數(shù)的性質(zhì)符號(減
數(shù)變相反數(shù));
【注意】:在有理數(shù)減法運算時,被減數(shù)與減數(shù)的位置不能隨意交換;因為減法沒有交換律.
減法法則不能與加法法則類比,0加任何數(shù)都不變,0減任何數(shù)應(yīng)依法則進行計算.
三.有理數(shù)的加減混合運算
(1)有理數(shù)加減混合運算的方法:有理數(shù)加減法統(tǒng)一成加法.
(2)方法指引:
①在一個式子里,有加法也有減法,根據(jù)有理數(shù)減法法則,把減法都轉(zhuǎn)化成加法,并寫成省略括號的和的形
式.
②轉(zhuǎn)化成省略括號的代數(shù)和的形式,就可以應(yīng)用加法的運算律,使計算簡化.
四.有理數(shù)的乘法
(1)有理數(shù)乘法法則:兩數(shù)相乘,同號得正,異號得負,并把絕對值相乘.
(2)任何數(shù)同零相乘,都得0.
(3)多個有理數(shù)相乘的法則:①幾個不等于0的數(shù)相乘,積的符號由負因數(shù)的個數(shù)決定,當負因數(shù)有奇數(shù)
個時,積為負;當負因數(shù)有偶數(shù)個時,積為正.②幾個數(shù)相乘,有一個因數(shù)為0,積就為0.
(4)方法指引:
①運用乘法法則,先確定符號,再把絕對值相乘.
②多個因數(shù)相乘,看0因數(shù)和積的符號當先,這樣做使運算既準確又簡單.
五.倒數(shù)
(1)倒數(shù):乘積是1的兩數(shù)互為倒數(shù).
一般地,。?工=1(aWO),就說a(aWO)的倒數(shù)是工.
aa
(2)方法指引:
①倒數(shù)是除法運算與乘法運算轉(zhuǎn)化的“橋梁”和“渡船”.正像減法轉(zhuǎn)化為加法及相反數(shù)一樣,非常重要.倒
數(shù)是伴隨著除法運算而產(chǎn)生的.
②正數(shù)的倒數(shù)是正數(shù),負數(shù)的倒數(shù)是負數(shù),而0沒有倒數(shù),這與相反數(shù)不同.
【規(guī)律方法】求相反數(shù)、倒數(shù)的方法
求一個數(shù)的相反數(shù)求一個數(shù)的相反數(shù)時,只需在這個數(shù)前面加上“-”即可
求一個數(shù)的倒數(shù)求一個整數(shù)的倒數(shù),就是寫成這個整數(shù)分之一
求一個分數(shù)的倒數(shù),就是調(diào)換分子和分母的位置
注意:0沒有倒數(shù).
六.有理數(shù)的除法
(1)有理數(shù)除法法則:除以一個不等于0的數(shù),等于乘這個數(shù)的倒數(shù),即:a+?工(bWO)
b
(2)方法指引:
(1)兩數(shù)相除,同號得正,異號得負,并把絕對值相除.0除以任何一個不等于0的數(shù),都得0.
(2)有理數(shù)的除法要分情況靈活選擇法則,若是整數(shù)與整數(shù)相除一般采用“同號得正,異號得負,并把絕
對值相除”.如果有了分數(shù),則采用“除以一個不等于0的數(shù),等于乘這個數(shù)的倒數(shù)”,再約分.乘除混合運
算時一定注意兩個原則:①變除為乘,②從左到右.
七.有理數(shù)的乘方
(1)有理數(shù)乘方的定義:求n個相同因數(shù)積的運算,叫做乘方.
乘方的結(jié)果叫做暴,在a"中,a叫做底數(shù),。叫做指數(shù).a"讀作。的。次方.(將a"看作是a的。次方的結(jié)
果時,也可以讀作a的八次幕.)
(2)乘方的法則:正數(shù)的任何次幕都是正數(shù);負數(shù)的奇次塞是負數(shù),負數(shù)的偶次幕是正數(shù);0的任何正整
數(shù)次幕都是0.
(3)方法指引:
①有理數(shù)的乘方運算與有理數(shù)的加減乘除運算一樣,首先要確定塞的符號,然后再計算幕的絕對值;
②由于乘方運算比乘除運算又高一級,所以有加減乘除和乘方運算,應(yīng)先算乘方,再做乘除,最后做加減.
指數(shù)
八.非負數(shù)的性質(zhì):偶次方
偶次方具有非負性.
任意一個數(shù)的偶次方都是非負數(shù),當幾個數(shù)或式的偶次方相加和為0時,則其中的每一項都必須等于0.
九.有理數(shù)的混合運算
(1)有理數(shù)混合運算順序:先算乘方,再算乘除,最后算加減;同級運算,應(yīng)按從左到右的順序進行計算;
如果有括號,要先做括號內(nèi)的運算.
(2)進行有理數(shù)的混合運算時,注意各個運算律的運用,使運算過程得到簡化.
【規(guī)律方法】有理數(shù)混合運算的四種運算技巧
1.轉(zhuǎn)化法:一是將除法轉(zhuǎn)化為乘法,二是將乘方轉(zhuǎn)化為乘法,三是在乘除混合運算中,通常將小數(shù)轉(zhuǎn)化為
分數(shù)進行約分計算.
2.湊整法:在加減混合運算中,通常將和為零的兩個數(shù),分母相同的兩個數(shù),和為整數(shù)的兩個數(shù),乘積為
整數(shù)的兩個數(shù)分別結(jié)合為一組求解.
3.分拆法:先將帶分數(shù)分拆成一個整數(shù)與一個真分數(shù)的和的形式,然后進行計算.
4.巧用運算律:在計算中巧妙運用加法運算律或乘法運算律往往使計算更簡便.
十.科學記數(shù)法一表示較大的數(shù)
(1)科學記數(shù)法:把一個大于10的數(shù)記成aXIO"的形式,其中a是整數(shù)數(shù)位只有一位的數(shù),n是正整數(shù),
這種記數(shù)法叫做科學記數(shù)法.【科學記數(shù)法形式:aX10",其中:LWa<10,"為正整數(shù).】
(2)規(guī)律方法總結(jié):
①科學記數(shù)法中a的要求和10的指數(shù)n的表示規(guī)律為關(guān)鍵,由于10的指數(shù)比原來的整數(shù)位數(shù)少1:按此規(guī)
律,先數(shù)一下原數(shù)的整數(shù)位數(shù),即可求出10的指數(shù)n.
②記數(shù)法要求是大于10的數(shù)可用科學記數(shù)法表示,實質(zhì)上絕對值大于10的負數(shù)同樣可用此法表示,只是
前面多一個負號.
一【考點剖析】
有理數(shù)的加法(共6小題)
1.(2022秋?蘭溪市期末)比-2大1的數(shù)()
A.-3B.-1C.」D.2
2
2.(2022秋?漢陽區(qū)校級期末)若x的相反數(shù)是2,|y|=5,則x+y的值為()
A.-7B.7或3C.7或-3D.3或-7
3.(2023?秀洲區(qū)校級二模)計算:(-2)+3的結(jié)果是()
A.-5B.-1C.1D.5
4.(2022秋?長興縣月考)若兩個有理數(shù)A、B滿足A+B=8,則稱A、B互為“吉祥數(shù)”.如5和3就是一
對“吉祥數(shù)回答下列問題:
⑴求-5的“吉祥數(shù)”;
(2)若3x的“吉祥數(shù)”是-4,求尤的值;
(3)尤和9能否互為“吉祥數(shù)”?若能,請求出;若不能,請說明理由.
5.(2022秋?新昌縣期中)設(shè)計一個可用加法計算的實際問題,要求用一個正數(shù)和一個負數(shù)的加法來解決,
寫出算式并說明結(jié)果的實際意義.
6.(2021秋?越城區(qū)期中)王先生到市行政中心大樓辦事,假定乘電梯向上一樓記作+1,向下一樓記作-1,
王先生從1樓出發(fā),電梯上下樓層依次記錄如下(單位:層):+6,-3,+10,-8,+12,-7,-10.
(1)請你通過計算說明王先生最后是否回到出發(fā)點1樓.
(2)該中心大樓每層高3加,電梯每向上或下1機需要耗電0.2度,根據(jù)王先生現(xiàn)在所處位置,請你算算,
他辦事時電梯需要耗電多少度?
有理數(shù)的減法(共2小題)
7.(2022秋?鹿城區(qū)期中)計算1-3的結(jié)果是()
A.2B.4C.-4D.-2
8.(2021秋?吳興區(qū)期中)閱讀理解:
數(shù)軸上線段的長度可以用線段端點表示的數(shù)進行減法運算得到,例如圖,線段48=1=0-(-1);線段
BC=2=2-0;線段AC=3=2-(-1)
問題
⑴數(shù)軸上點M、N代表的數(shù)分別為-9和1,則線段MN=;
(2)數(shù)軸上點E、尸代表的數(shù)分別為-6和-3,則線段;
(3)數(shù)軸上的兩個點之間的距離為5,其中一個點表示的數(shù)為2,則另一個點表示的數(shù)為相,求相.
ABC
~^2i61234^
三.有理數(shù)的加減混合運算(共5小題)
9.(2020秋?吳興區(qū)校級期中)下列各式可以寫成a-b+c的是()
A.a-(+Z?)-(+c)B.tz-(+/?)-(-c)
C.〃+(-b)+(-c)D.〃+(-b)-(+c)
10.(2022秋?衢江區(qū)校級月考)下列各式中與2-3+4相等的是()
A.2-(+3)-(+4)B.2-(+3)-(-4)
C.2+(-3)+(-4)D.2+(-3)-(+4)
11.(2022秋?衢江區(qū)校級月考)設(shè)同表示取。的整數(shù)部分,例如:[2,3]=2,[5]=5,[-4]=-5-
⑴求[4]+[-3.6]-[-7]的值;
求{吟}-
(2)令{〃}=〃-[a],[-2.4]+-
12.(2022秋?椒江區(qū)校級月考)在有些情況下,不需要計算出結(jié)果也能把絕對值符號去掉,例如:|6+7|=
6+7;|6-7|=7-6;|7-6|=7-6;|-6-7|=6+7.
(1)根據(jù)上面的規(guī)律,把下列各式寫成去掉絕對值符號的形式;①|(zhì)7-21尸___________;②--L|
1718
(2)用合理的方法計算:|上」^|+|出」|
55575572
-%店-?
(3)用簡單的方法計算:4-H+4-g+“+i______1_|
232435420212020
13.(2022秋?南湖區(qū)校級月考)點A、B在數(shù)軸上分別表示有理數(shù)°、b,則A、8兩點之間的表示為距離
AB=\a-b\,利用數(shù)形結(jié)合思想回答下列問題:
(1)數(shù)軸上表示2和-1的兩點之間的距離為.
(2)數(shù)軸上表示x和-1兩點之間的距離為.若x表示一個有理數(shù),且-4<x<2,則|x-
2|+|尤+4|=.
(3)數(shù)軸上從左到右的三個點A,B,C所對應(yīng)的數(shù)分別為a,b,c.其中AB=2020,BC=1000,如圖
2所示.
①若以8為原點,寫出點A,C所對應(yīng)的數(shù),并計算a+6+c的值.
②若。是原點,且02=18,求a+b-c的值.
ABC
II|||||IIIJI
-6-5-4-3-2-10123456
圖1
2?201000
----------/-----------------'----/------'--Ii------------->
ABC
圖2
四.有理數(shù)的乘法(共4小題)
14.(2020秋?溫州月考)計算8X(-1)的結(jié)果是()
2
A.16B.-16C.-4D.4
15.(2022秋?溫州期末)計算:-工乂4=_________.
2
16.(2022秋?西湖區(qū)校級期中)已知:|〃|=2,依=5,若-Z?,則〃/?=
17.(2022秋?湖北期末)如果4個不等的偶數(shù)如n,p,9滿足(3-小)(3-〃)(3-p)(3-夕)=9,那么
m+n+p+q等于.
五.有理數(shù)的除法(共4小題)
18.(2012秋?臺州期中)計算:(-4)小(蔣)的結(jié)果是()
A.-8B.8C.2D.-2
19.(2022秋?余杭區(qū)校級月考)(1)工+(-§)+(-0.25);
123
(2)-99^-X34.
17
20.(2022秋?杭州月考)
⑴心+(得)+(-0.25);(2)-99匹義34.
J./o17
21.(2022秋?越城區(qū)期中)閱讀下題解答:
計算:(傳)小/整4)?
分析:利用倒數(shù)的意義,先求出原式的倒數(shù),再得原式的值.
解:巨)+(」)=(1"§巨)義(-24)=-16+18-21=-19.
'348,'24'匕48,
所以原式=--L.
19
2
根據(jù)閱讀材料提供的方法,完成下面的計算:(^■)+弓一號+(得)x(-6)]-
OIO
六.有理數(shù)的乘方(共3小題)
22.(2022秋?永康市期中)-32的值等于()
A.-9B.9C.6D.-6
23.(2019秋?蕭山區(qū)期中)計算:23=
24.(2022秋?寧波期中)已知同=7,信=4,c3=-8,
(1)若a<b,求的值;
(2)若abc>0,求a-3b-2c的值.
七.非負數(shù)的性質(zhì):偶次方(共2小題)
25.(2020秋?金東區(qū)校級月考)若|a+2|+(b-4)2=0,則步=.
26.(2022秋?蘭溪市期中)已知(a-2)2與也+1|互為相反數(shù),求(a-b)研》的值.
八.有理數(shù)的混合運算(共21小題)
27.(2022秋?杭州期末)計算:
(1)15+(-13)+18;(2)-10.25X(-4);
(3)-124-4X3;(4)-23X3+2X(-3)2
28.(2022秋?南湖區(qū)校級月考)簡便計算:
(1)(-A)+(-3.75)+(+33)+(-11).(2)(A-1+1)X(-30).
17417235
29.(2022秋?青田縣期中)小明有五張寫著不同數(shù)字的卡片,請你按要求抽出卡片,完成下列問題.
(1)從中抽出2張卡片,使這兩張卡片上數(shù)字乘積最大,最大值是.
(2)從中抽出4張卡片,用學過的運算方法,使結(jié)果為24,(例如-3X(-5-3+0)=24與(-5-
3+0)X(-3)=24視為同一種方法),請你再寫出兩種不同的運算式子.
HEOQEOEU
30.(2022秋?青田縣期中)規(guī)定一種新的運算:airb=aXb-a-b+\,例如3*(-4)=3X(-4)-3-
(-4)+1.請計算下列各式的值:
(1)2*5;
(2)(-2)★(-5).
31.(2022秋?鹿城區(qū)期中)小明在計算“』+2-5”給出了以下解答:
254
解:記5=』+3-$.
254
因為20s=20(工+3-亙)=20X2+20><3-20X立=10+12-25=-3.
254254
所以s=即上+旦-&=3
2025420
請你模仿小明的計算方法計算:上-旦+$.
386
32.(2022秋?杭州期中)出租車司機小張某天上午某個時段的營運全是在東西走向的文一路上進行.如果
規(guī)定向東為正,向西為負,他這天上午行車里程(單位:km}如下:
+5,-3,+6,-7,+6,-2,-5,+4,+6,-8
(1)將第幾名乘客送到目的地時,小張剛好回到上午出發(fā)點?
(2)將最后一名乘客送到目的地時,小張距上午出發(fā)點多遠?在出發(fā)點的東面還是西面?
(3)若出租車的收費標準為:起步價11元(不超過3千米),超過3千米,超過部分每千米2元.則小
張在這天上午這個時段一共收入多少元?
33.(2022秋?仙居縣期末)計算:
(1)-2+3-5;(2)(-1)2X5-(-2)34-4.
34.(2021秋?金華期末)計算:
(1)-8+4+(-2);(2)-24-[(-2)-(-4)].
35.(2022秋?浦江縣月考)概念學習
規(guī)定:求若干個相同的有理數(shù)(均不等于0)的除法運算叫做除方,如2+2+2,
(-3)+(-3)+(-3)+(-3)等.類比有理數(shù)的乘方,我們把2?2+2記作2③,讀作“2的圈
3次方”,(-3)4-(-3)+(-3)+(-3)記作(-3)④,讀作“-3的圈4次方”,一般地,把
a+a+a.......+aQW。)記作a°,讀作“a的圈〃次方
初步探究
(1)直接寫出計算結(jié)果:2回=,(-工)回=;
2
深入思考
我們知道,有理數(shù)的減法運算可以轉(zhuǎn)化為加法運算,除法運算可以轉(zhuǎn)化為乘法運算,有理數(shù)的除方運算
如何轉(zhuǎn)化為乘方運算呢?
(2)試一試:仿照如圖的算式,將下列運算結(jié)果直接寫成累的形式.
2
(3)想一想:將一個非零有理數(shù)。的圈”次方寫成塞的形式等于:
(4)算一算:24+23+(_]6)X2?.
2④=2+2:2:2
除|=2X—X—X—
方222,__________
_____I=(―J2______a乘方
2幕的形式
36.(2022秋?浦江縣月考)已知a,6互為相反數(shù),c,1互為倒數(shù),x的絕對值是2,求2x?+工生生的
cdcd
值.
37.(2022秋?東陽市期中)計算:-22x2+(-6)2乂3」)-9+(-1).
322
38.(2022秋?邦州區(qū)期中)已知a、b互為相反數(shù)(a,b不為0),c、d互為倒數(shù),|m|=2,且m>0,求
2a+26+至-(cd)2022-3m的值.
b
39.(2022秋?寧海縣校級期中)(1)若用A、B、C分別表示有理數(shù)a,b,c,。為原點,如圖所示:
化簡:\c+a\~\a+b\-\c-b\;
(2)有理數(shù)a、b、m、n、x滿足下列條件:。與6互為倒數(shù),相與〃互為相反數(shù),x的絕對值為最小的
正整數(shù),求2022Gn+n)+2021?-20202的值.
ACOB
22
40.(2022秋?余姚市月考)對有理數(shù)a,b,定義運算aVb=a?,請計算(-2)V[(-1)V3]的值.
2
41.(2022秋?浦江縣月考)計算:
(1)-11-(-8)+(-13)+12;⑵-22-15-^y+(-4)X5;
⑶亭(臂)+5和(+&|);(4)Q36)X(W啥);
o
(5)(-7)X(-5)-90+(-15)+(-rr)+(-0.25),
42.(2021秋?武義縣期末)(1)下面計算對嗎?若不對,哪一步開始錯,請說明理由,并改正.
74-224-70
=74-44-70........①
=704-70........②
=1….③
(2)用簡便方法計算,在括號內(nèi)填乘法運算律.
(-12)X(-41)X.
0
=(-41)x(-12)X-j()
6
=(乘法結(jié)合律)
43.(2022秋?青田縣期中)計算下列各題:
(1)(-8)-(-5)+(-9);(2)-32-504-(-5)2-1.
44.(2022秋?鎮(zhèn)海區(qū)校級期中)對于一個數(shù)無,我們用Cx]表示小于x的最大整數(shù),例如:(2.6]=2,(-3]
=-4.
(1)填空:(0]=;(2022]=;(一旦]=;
4
(2)若m6都是整數(shù),且Q-1]和(6+2]互為相反數(shù),求代數(shù)式(a+孑的值.
45.(2022秋?桐鄉(xiāng)市期中)下面是亮亮同學計算一道題的過程:
15+5義(-3)-6X(弓片)
=15+(-15)-6X3-+6X-2....①
23
=-1-9+4....②
=-6....③
(1)亮亮計算過程從第步出現(xiàn)錯誤的;(填序號)
(2)請你寫出正確的計算過程.
46.(2022秋?鹿城區(qū)期中)有6筐卷心菜,每筐以20千克為基準,超過的千克數(shù)記為正數(shù),不足的千克數(shù)
記為負數(shù),記錄如圖:
回答下列問題;
(1)與基準質(zhì)量比較,6框卷心菜的總計超過或不足多少千克?
(2)若卷心菜每千克售價5.8元,則出售這6筐卷心菜可賣多少元?
47.(2021秋?瑞安市期中)王紅有5張寫著以下數(shù)字的卡片,請按要求抽出卡片,完成下列各題:
IIcoII三130
(1)從中抽取2張卡片,使這兩張卡片上的數(shù)字乘積最大,乘積的最大值為.
(2)從中抽取除0以外的4張卡片,將這4個數(shù)字進行加、減、乘、除等混合運算,使其結(jié)果等于24,
每個數(shù)字只能用一次,請寫出兩種不同的符合要求的運算式子.
九.近似數(shù)和有效數(shù)字(共3小題)
48.(2022秋?東陽市期中)由四舍五入法得到的近似數(shù)1.20萬,對其描述正確的是()
A.1.20萬精確到十分位B.1.20萬精確到百分位
C.1.20萬精確到萬位D.1.20萬精確到百位
49.(2021秋?臨海市月考)對于近似數(shù)3.07萬,下列說法正確的是()
A.精確到0.01B.精確到百分之一
C.精確到萬位D.精確到百位
50.(2022秋?鹿城區(qū)校級期中)近似數(shù)5.20精確到_________位.
一十.科學記數(shù)法一表示較大的數(shù)(共2小題)
51.(2022秋?南涔區(qū)期末)12月4日晚上,神舟14號飛船即將從空間站返回東風著陸場.中國的空間站離
地球的距離約320000米.320000用科學記數(shù)法表示為()
A.32X104B.0.32X106C.3.2X105D.32X105
52.(2022秋?臨海市期末)我國倡議的“一帶一路”惠及約為4400000000人,用科學記數(shù)法表示該數(shù)
為______________
【過關(guān)檢測】
一、單選題
1.下列運算結(jié)果為1的是()
A.|-3|-|+4B.|(-3)-(-4)C.-3|-|-4D.1+31-1-4
2.下列計算中正確的是()
A.(-1)\(-1)3=1B.-(-3丫=9
C.一3+(-;)=9D.9T)=9
3.下列計算結(jié)果為負數(shù)的是()
A.-(-2)3B.-24C.(一1)x(-3)5D.23x(-2)6
4.小紅的媽媽買了4筐白菜,以每筐25千克為標準,超過的千克數(shù)記為正數(shù),不足的千克數(shù)記為負數(shù),稱
重后的記錄分別為+0.25,-1,+0.5,-0.75,小紅快速準確地算出了4筐白菜的總質(zhì)量為()
A.-1千克B.1千克C.99千克D.101千克
5.已知兩個有理數(shù)ab,如果a6<0且a+6>0,那么()
A.a>0,6>0
B.a<0,b>0
C.a、b同號
D.a、6異號,且正數(shù)的絕對值較大
6.如果|a+2|+(b—1尸=0,那么(a+b)如9的值等于().
A.-1B.-2019C.1D.2019
7.在數(shù)5,-2,7,一6中,任意三個不同的數(shù)相加,其中最小的和是()
A.10B.6C.-3D.-1
8.若|a+l|+|b-2|+|c+3|=0,則(a-D(b+2)(c-3)的值是()
A.-48B.48C.0D.無法確定
ab
9.如果abWO,那么向+祠的值不可能是()
A.0B.1C.2D.-2
10.為求1+2+22+2^卜0。酗的值,可令S=l+2+22+
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 工廠入股協(xié)議合同
- 勞務(wù)合同口頭協(xié)議
- 智慧水務(wù)系統(tǒng)合同協(xié)議
- 妥協(xié)協(xié)議合同模板
- 店鋪股東協(xié)議合同
- 超市合同提前終止協(xié)議書
- 車輛寄售協(xié)議合同
- 專升本協(xié)議合同
- 藥品自提協(xié)議合同
- 用車協(xié)議合同模板
- 野生動物保護管理制度
- GB/T 4857.23-2021包裝運輸包裝件基本試驗第23部分:垂直隨機振動試驗方法
- GB/T 1354-2018大米
- 2023年北京郵電大學自主招生申請報告
- 職業(yè)生涯規(guī)劃課件
- 未帶有效居民身份證考生承諾書
- 弱電機房驗收標準
- 安全專項整治三年行動臺賬套表
- 《數(shù)據(jù)的收集與整理》說課稿課件
- 人工智能產(chǎn)業(yè)學院建設(shè)方案
- 初中數(shù)學知識框架
評論
0/150
提交評論