




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025年云南省祿豐縣廣通中學高三年級第一次調研考試數學試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某程序框圖如圖所示,若輸出的,則判斷框內為()A. B. C. D.2.在中,角所對的邊分別為,已知,則()A.或 B. C. D.或3.在中,內角所對的邊分別為,若依次成等差數列,則()A.依次成等差數列 B.依次成等差數列C.依次成等差數列 D.依次成等差數列4.若雙曲線的一條漸近線與直線垂直,則該雙曲線的離心率為()A.2 B. C. D.5.已知,是兩條不重合的直線,是一個平面,則下列命題中正確的是()A.若,,則 B.若,,則C.若,,則 D.若,,則6.如圖是正方體截去一個四棱錐后的得到的幾何體的三視圖,則該幾何體的體積是()A. B. C. D.7.設全集U=R,集合,則()A. B. C. D.8.已知分別為圓與的直徑,則的取值范圍為()A. B. C. D.9.關于函數,有下述三個結論:①函數的一個周期為;②函數在上單調遞增;③函數的值域為.其中所有正確結論的編號是()A.①② B.② C.②③ D.③10.設函數的導函數,且滿足,若在中,,則()A. B. C. D.11.已知甲、乙兩人獨立出行,各租用共享單車一次(假定費用只可能為、、元).甲、乙租車費用為元的概率分別是、,甲、乙租車費用為元的概率分別是、,則甲、乙兩人所扣租車費用相同的概率為()A. B. C. D.12.過橢圓的左焦點的直線過的上頂點,且與橢圓相交于另一點,點在軸上的射影為,若,是坐標原點,則橢圓的離心率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.角的頂點在坐標原點,始邊與軸的非負半軸重合,終邊經過點,則的值是.14.點是曲線()圖象上的一個定點,過點的切線方程為,則實數k的值為______.15.若一個正四面體的棱長為1,四個頂點在同一個球面上,則此球的表面積為_________.16.甲、乙、丙、丁四人參加冬季滑雪比賽,有兩人獲獎.在比賽結果揭曉之前,四人的猜測如下表,其中“√”表示猜測某人獲獎,“×”表示猜測某人未獲獎,而“○”則表示對某人是否獲獎未發表意見.已知四個人中有且只有兩個人的猜測是正確的,那么兩名獲獎者是_______.甲獲獎乙獲獎丙獲獎丁獲獎甲的猜測√××√乙的猜測×○○√丙的猜測×√×√丁的猜測○○√×三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)高鐵和航空的飛速發展不僅方便了人們的出行,更帶動了我國經濟的巨大發展.據統計,在2018年這一年內從市到市乘坐高鐵或飛機出行的成年人約為萬人次.為了解乘客出行的滿意度,現從中隨機抽取人次作為樣本,得到下表(單位:人次):滿意度老年人中年人青年人乘坐高鐵乘坐飛機乘坐高鐵乘坐飛機乘坐高鐵乘坐飛機10分(滿意)1212022015分(一般)2362490分(不滿意)106344(1)在樣本中任取個,求這個出行人恰好不是青年人的概率;(2)在2018年從市到市乘坐高鐵的所有成年人中,隨機選取人次,記其中老年人出行的人次為.以頻率作為概率,求的分布列和數學期望;(3)如果甲將要從市出發到市,那么根據表格中的數據,你建議甲是乘坐高鐵還是飛機?并說明理由.18.(12分)已知函數(1)求單調區間和極值;(2)若存在實數,使得,求證:19.(12分)如圖,在四棱錐中,底面,,,,,點為棱的中點.(1)證明::(2)求直線與平面所成角的正弦值;(3)若為棱上一點,滿足,求二面角的余弦值.20.(12分)在平面直角坐標系中,已知向量,,其中.(1)求的值;(2)若,且,求的值.21.(12分)如圖,三棱錐中,(1)證明:面面;(2)求二面角的余弦值.22.(10分)已知直線過橢圓的右焦點,且交橢圓于A,B兩點,線段AB的中點是,(1)求橢圓的方程;(2)過原點的直線l與線段AB相交(不含端點)且交橢圓于C,D兩點,求四邊形面積的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】程序在運行過程中各變量值變化如下表:KS是否繼續循環循環前11第一圈24是第二圈311是第三圈426是第四圈557是第五圈6120否故退出循環的條件應為k>5?本題選擇C選項.點睛:使用循環結構尋數時,要明確數字的結構特征,決定循環的終止條件與數的結構特征的關系及循環次數.尤其是統計數時,注意要統計的數的出現次數與循環次數的區別.2.D【解析】
根據正弦定理得到,化簡得到答案.【詳解】由,得,∴,∴或,∴或.故選:本題考查了正弦定理解三角形,意在考查學生的計算能力.3.C【解析】
由等差數列的性質、同角三角函數的關系以及兩角和的正弦公式可得,由正弦定理可得,再由余弦定理可得,從而可得結果.【詳解】依次成等差數列,,正弦定理得,由余弦定理得,,即依次成等差數列,故選C.本題主要考查等差數列的定義、正弦定理、余弦定理,屬于難題.解三角形時,有時可用正弦定理,有時也可用余弦定理,應注意用哪一個定理更方便、簡捷.如果式子中含有角的余弦或邊的二次式,要考慮用余弦定理;如果遇到的式子中含有角的正弦或邊的一次式時,則考慮用正弦定理;以上特征都不明顯時,則要考慮兩個定理都有可能用到.4.B【解析】
由題中垂直關系,可得漸近線的方程,結合,構造齊次關系即得解【詳解】雙曲線的一條漸近線與直線垂直.∴雙曲線的漸近線方程為.,得.則離心率.故選:B本題考查了雙曲線的漸近線和離心率,考查了學生綜合分析,概念理解,數學運算的能力,屬于中檔題.5.D【解析】
利用空間位置關系的判斷及性質定理進行判斷.【詳解】解:選項A中直線,還可能相交或異面,選項B中,還可能異面,選項C,由條件可得或.故選:D.本題主要考查直線與平面平行、垂直的性質與判定等基礎知識;考查空間想象能力、推理論證能力,屬于基礎題.6.C【解析】
根據三視圖作出幾何體的直觀圖,結合三視圖的數據可求得幾何體的體積.【詳解】根據三視圖還原幾何體的直觀圖如下圖所示:由圖可知,該幾何體是在棱長為的正方體中截去四棱錐所形成的幾何體,該幾何體的體積為.故選:C.本題考查利用三視圖計算幾何體的體積,考查空間想象能力與計算能力,屬于基礎題.7.A【解析】
求出集合M和集合N,,利用集合交集補集的定義進行計算即可.【詳解】,,則,故選:A.本題考查集合的交集和補集的運算,考查指數不等式和二次不等式的解法,屬于基礎題.8.A【解析】
由題先畫出基本圖形,結合向量加法和點乘運算化簡可得,結合的范圍即可求解【詳解】如圖,其中,所以.故選:A本題考查向量的線性運算在幾何中的應用,數形結合思想,屬于中檔題9.C【解析】
①用周期函數的定義驗證.②當時,,,再利用單調性判斷.③根據平移變換,函數的值域等價于函數的值域,而,當時,再求值域.【詳解】因為,故①錯誤;當時,,所以,所以在上單調遞增,故②正確;函數的值域等價于函數的值域,易知,故當時,,故③正確.故選:C.本題考查三角函數的性質,還考查推理論證能力以及分類討論思想,屬于中檔題.10.D【解析】
根據的結構形式,設,求導,則,在上是增函數,再根據在中,,得到,,利用余弦函數的單調性,得到,再利用的單調性求解.【詳解】設,所以,因為當時,,即,所以,在上是增函數,在中,因為,所以,,因為,且,所以,即,所以,即故選:D本題主要考查導數與函數的單調性,還考查了運算求解的能力,屬于中檔題.11.B【解析】
甲、乙兩人所扣租車費用相同即同為1元,或同為2元,或同為3元,由獨立事件的概率公式計算即得.【詳解】由題意甲、乙租車費用為3元的概率分別是,∴甲、乙兩人所扣租車費用相同的概率為.故選:B.本題考查獨立性事件的概率.掌握獨立事件的概率乘法公式是解題基礎.12.D【解析】
求得點的坐標,由,得出,利用向量的坐標運算得出點的坐標,代入橢圓的方程,可得出關于、、的齊次等式,進而可求得橢圓的離心率.【詳解】由題意可得、.由,得,則,即.而,所以,所以點.因為點在橢圓上,則,整理可得,所以,所以.即橢圓的離心率為故選:D.本題考查橢圓離心率的求解,解答的關鍵就是要得出、、的齊次等式,充分利用點在橢圓上這一條件,圍繞求點的坐標來求解,考查計算能力,屬于中等題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】試題分析:由三角函數定義知,又由誘導公式知,所以答案應填:.考點:1、三角函數定義;2、誘導公式.14.1【解析】
求出導函數,由切線斜率為4即導數為4求出切點橫坐標,再由切線方程得縱坐標后可求得.【詳解】設,由題意,∴,,,即,∴,.故答案為:1.本題考查導數的幾何意義,函數圖象某點處的切線的斜率就是該點處導數值.本題屬于基礎題.15.【解析】
將四面體補成一個正方體,通過正方體的對角線與球的半徑的關系,得到球的半徑,利用球的表面積公式,即可求解.【詳解】如圖所示,將正四面體補形成一個正方體,則正四面體的外接球與正方體的外接球表示同一個球,因為正四面體的棱長為1,所以正方體的棱長為,設球的半徑為,因為球的直徑是正方體的對角線,即,解得,所以球的表面積為.本題主要考查了有關求得組合體的結構特征,以及球的表面積的計算,其中巧妙構造正方體,利用正方體的外接球的直徑等于正方體的對角線長,得到球的半徑是解答的關鍵,著重考查了空間想象能力,以及運算與求解能力,屬于基礎題.16.乙、丁【解析】
本題首先可根據題意中的“四個人中有且只有兩個人的猜測是正確的”將題目分為四種情況,然后對四種情況依次進行分析,觀察四人所猜測的結果是否沖突,最后即可得出結果.【詳解】從表中可知,若甲猜測正確,則乙,丙,丁猜測錯誤,與題意不符,故甲猜測錯誤;若乙猜測正確,則依題意丙猜測無法確定正誤,丁猜測錯誤;若丙猜測正確,則丁猜測錯誤;綜上只有乙,丙猜測不矛盾,依題意乙,丙猜測是正確的,從而得出乙,丁獲獎.所以本題答案為乙、丁.本題是一個簡單的合情推理題,能否根據“四個人中有且只有兩個人的猜測是正確的”將題目所給條件分為四種情況并通過推理判斷出每一種情況的正誤是解決本題的關鍵,考查推理能力,是簡單題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)(2)分布列見解析,數學期望(3)建議甲乘坐高鐵從市到市.見解析【解析】
(1)根據分層抽樣的特征可以得知,樣本中出行的老年人、中年人、青年人人次分別為,,,即可按照古典概型的概率計算公式計算得出;(2)依題意可知服從二項分布,先計算出隨機選取人次,此人為老年人概率是,所以,即,即可求出的分布列和數學期望;(3)可以計算滿意度均值來比較乘坐高鐵還是飛機.【詳解】(1)設事件:“在樣本中任取個,這個出行人恰好不是青年人”為,由表可得:樣本中出行的老年人、中年人、青年人人次分別為,,,所以在樣本中任取個,這個出行人恰好不是青年人的概率.(2)由題意,的所有可能取值為:因為在2018年從市到市乘坐高鐵的所有成年人中,隨機選取人次,此人為老年人概率是,所以,,,所以隨機變量的分布列為:故.(3)答案不唯一,言之有理即可.如可以從滿意度的均值來分析問題,參考答案如下:由表可知,乘坐高鐵的人滿意度均值為:乘坐飛機的人滿意度均值為:因為,所以建議甲乘坐高鐵從市到市.本題主要考查了分層抽樣的應用、古典概型的概率計算、以及離散型隨機變量的分布列和期望的計算,解題關鍵是對題意的理解,概率類型的判斷,屬于中檔題.18.(1)時,函數單調遞增,,函數單調遞減,;(2)見解析【解析】
(1)求出函數的定義域與導函數,利用導數求函數的單調區間,即可得到函數的極值;(2)易得且,要證明,即證,即證,即對恒成立,構造函數,,利用導數研究函數的單調性與最值,即可得證;【詳解】解:(1)因為定義域為,所以,時,,即在和上單調遞增,當時,,即函數在單調遞減,所以在處取得極小值,在處取得極大值;,;(2)易得,要證明,即證,即證即證對恒成立,令,,則令,解得,即在上單調遞增;令,解得,即在上單調遞減;則在取得極小值,也就是最小值,從而結論得證.本題考查利用導數研究函數的單調性與極值,利用導數證明不等式,考查運算求解能力,考查函數與方程思想,屬于中檔題.19.(1)證明見解析(2)(3)【解析】
(1)根據題意以為坐標原點,建立空間直角坐標系,寫出各個點的坐標,并表示出,由空間向量數量積運算即可證明.(2)先求得平面的法向量,即可求得直線與平面法向量夾角的余弦值,即為直線與平面所成角的正弦值;(3)由點在棱上,設,再由,結合,由空間向量垂直的坐標關系求得的值.即可表示出.求得平面和平面的法向量,由空間向量數量積的運算求得兩個平面夾角的余弦值,再根據二面角的平面角為銳角即可確定二面角的余弦值.【詳解】(1)證明:∵底面,,以為坐標原點,建立如圖所示的空間直角坐標系,∵,,點為棱的中點.∴,,,,,,.(2),設平面的法向量為.則,代入可得,令解得,即,設直線與平面所成角為,由直線與平面夾角可知所以直線與平面所成角的正弦值為.(3),由點在棱上,設,故,由,得,解得,即,設平面的法向量為,由,得,令,則取平面的法向量,則二面角的平面角滿足,由圖可知,二面角為銳二面角,故二面角的余弦值為.本題考查了空間向量的綜合應用,由空間向量證明線線垂直,求直線與平面夾角及平面與平面形成的二面角大小,計算量較大,屬于中檔題.20.(1)(2).【解析】
(1)根據,由向量,的坐標直接計算即得;(2)先求出,再根據向量平行的坐標關系解得.【詳解】(1)由題,向量,,則.(2),.,,整理得,化簡得,即,,,,即.本題考查平面向
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 西醫臨床傳染病知識試題及答案
- 系統管理師考試試題及答案的關鍵點
- 藥劑網絡學習平臺試題及答案
- 激光行業中的市場監管分析試題及答案
- 液壓實操考試題及答案
- 激光照明技術的未來展望試題及答案
- 新課改瘦專用2025版高考歷史一輪復習歷史上重大改革回眸第1講古代歷史上的重大改革講義含解析選修1
- 醫院分流考試題及答案
- 文化產業管理考試準備試題及答案
- 六年級語文下冊語文樂園七第1課時教案語文A版
- 2025年監理工程師考試《建設工程監理案例分析(水利工程)》綜合案例題
- 短期資金拆借合同樣本
- 汽車液壓主動懸架系統的設計與仿真
- 公共衛生應急管理體系建設的調研報告
- 數學-天一大聯考2025屆高三四省聯考(陜晉青寧)試題和解析
- 客戶體驗與滿意度提升作業指導書
- 2023 年浙江省事業單位 招聘考試真題及答案解析
- 供配電與照明知到智慧樹章節測試課后答案2024年秋內蒙古建筑職業技術學院
- 店面裝修施工方案范文
- 法律職業倫理知到智慧樹章節測試課后答案2024年秋溫州大學
- 2025年山西地質集團招聘筆試參考題庫含答案解析
評論
0/150
提交評論