電磁感應- 2025年高考物理復習專練(西北四省專用)(解析版)_第1頁
電磁感應- 2025年高考物理復習專練(西北四省專用)(解析版)_第2頁
電磁感應- 2025年高考物理復習專練(西北四省專用)(解析版)_第3頁
電磁感應- 2025年高考物理復習專練(西北四省專用)(解析版)_第4頁
電磁感應- 2025年高考物理復習專練(西北四省專用)(解析版)_第5頁
已閱讀5頁,還剩28頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

重難點13電磁感應

命題趨勢

考點三年考情分析2025考向預測

電磁感應現象

近3年陜西、山西、寧夏、青海未

磁通量(1)考點預測:電磁感應。

法拉第電磁感應定律單獨考查,只是與交變電流綜合。(2)考法預測:常與直流電路、

楞次定律發電裝置(2024?新課標卷,7)牛頓運動定律、能量、動量進行綜

自感、渦流合。

變壓器(2024?全國甲卷,6)

重難詮釋

【情境解讀】

感生電動勢S不變必

一(感生電場)“TNt

感應電動勢E=〃竽-v與8垂直E=Blv

(本質)一單根直導線——。與B夾角為aE=Blvsina

—動生電動勢—B不變L轉動切割E=±BF3

電(切割磁感線)2

磁L"根導線

感回路

楞次定律:感應電流的磁場阻礙引起感應電流的磁通量的變化

右手定則

感應電流

—山廠電源:產生感應電動勢的那部分導體

電路一..

L-等效電路

感應電流/=

安培力一動力學分析

做為一能量分析

【高分技巧】

一、與電路、電荷量綜合

1.感應電流方向的判斷:感生電動勢一楞次定律;動生電動勢——右手定則。

2.在電磁感應的電路中,產生感應電動勢的那部分導體相當于電源,若形成回路,電源兩端的電壓為外電

壓。

3.電磁感應中的電荷量:q=It=r^(n:線圈匝數,、①?.磁通量變化量,R總:閉合電路的總電阻)

二、電磁感應中的動力學問題

F合產0

尸安=B〃變化

〔靜止或勻速直線運動)

三、電磁感應中的能量問題

1.能量轉化關系

[其他形式的能量罔薩!爵國蔬式的能量)

2.焦耳熱的三種求法

①焦耳定律:0=/2用,適用于電流、電阻不變的情況。

②功能關系:。=卬克安,W克安表示克服安培力做的功,電流變或不變都適用。

③能量轉化:Q=AE其他,AB其他表示其他能的減少量,電流變或不變都適用。

四、電磁感應與動量的綜合

1.動量定理在電磁感應中的應用

在導體單桿切割磁感線做變加速運動時,若牛頓運動定律和能量觀點不能解決問題,可運用動量定理巧妙

解決問題。

若導體桿的有效長度£、質量〃7、磁感應強度2已知,

(1).求電荷量:q—△。建立聯系

—B1LAt=mv2-mvi,q=IAt,即—BqL=mv2-mv\

(2).求位移:x-Ao建立聯系

B2£2Az

-nnB^l}x

--=mv2~mvi,x=v△/,即一f—=mv2~mv\

N總K總

(3).求時間(有恒力參與):加一4—△。建立聯系

-BlLM+F其他\t=mv2——mviBP——BLq+F其他Nt=m)2——mri

B2£2V\t

或-----+/其他A/=mv2~nw\,

K總

§2.2

即一二^十.尸其他mV2-mvi

已知電荷量q、位移尤、尸其他(P其他為恒力)

2.動量守恒定律在電磁感應中的應用

在等大的勻強磁場中有效長度相等的雙棒模型,系統受到合外力為零,常用動量守恒求解速度關系。常見

的問題:求熱量、求電量、求相對位移。

解題策略:用動量守恒求出達到共速時的速度,根據能量守恒定律算出產生的熱量,對其中一個棒進行分

析,通過動量定理可以得出通過電路的電荷量,進一步求出兩棒位移的變化量。

<1

限時提升練

(建議用時:40分鐘)

【考向一:動生】

1.(2024?寧夏中衛市?一模)如圖所示,勻強磁場中有一個用軟導線制成的單匝閉合線圈,線圈平面與

磁場垂直.已知線圈的面積S=0.3m2、電阻R=0.6Q,磁場的磁感應強度B=0.2T.現同時向兩側拉動線圈,線

圈的兩邊在Au。.5s時間內合到一起.求線圈在上述過程中

(1)感應電動勢的平均值E;

(2)感應電流的平均值/,并在圖中標出電流方向;

(3)通過導線橫截面的電荷量q.

【答案】(1)E=0.12V;(2)Z=0.2A(電流方向見圖)(3)4=0.1C

【解析】(1)由法拉第電磁感應定律有:

AQ

感應電動勢的平均值E=—

Ar

磁通量的變化A(D=BAS

解得:E%

代入數據得:E=012V;

(2)由閉合電路歐姆定律可得:

F

平均電流/=—

R

代入數據得Z=0.2A

由楞次定律可得,感應電流方向如圖:

(3)由電流定義式1=幺可得:電荷量q=/Af代入數據得4=0.1C.

At

2.(2024?青海省西寧市?二模)(多選)如圖所示,PN與QM兩平行金屬導軌相距1m,電阻不計,兩端

分別接有電阻R和且Ri=6Q,洲桿的電阻為2d在導軌上可無摩擦地滑動,垂直穿過導軌平面的勻

強磁場的磁感應強度為1T。現仍以恒定速度v=3m/s勻速向右移動,這時仍桿上消耗的電功率與品、及

消耗的電功率之和相等。則()

Q

XN

B

XXX

—>vR2

XXX

XXX

Qb'M

AR2=3。

B.Ri上消耗的電功率為0.75W

C.a,b間電壓為3V

D.拉他桿水平向右的拉力為0.75N

【答案】AD

【解析】A.由于M桿上消耗的電功率與Q、&消耗的電功率之和相等。所以"桿的電阻與R、&并聯

的總電阻相等,則

111

+-

一---

4凡2

解得

旦=30

故A正確;

C.感應電動勢為

E=JB£v=lxlx3V=3V

。、6間電壓為

U=-E=1.5V

2

故C錯誤;

B.R上消耗的電功率為

U~152

P=——=——W=0.375W

1&6

故B錯誤;

D.拉M桿水平向右的拉力與油桿所受安培力大小相等,為

p3

F=BIL=B——£=lx——xlN=0.75N

2R"2x2

故D正確。

故選AD?

3.(2024?山西省名校聯考?三模)如圖甲,電阻可忽略的兩根長度為0.9m的導軌ad、be,與四根長度均

為L=lm的導體棒焊接成“目”字形導體框,相鄰導體棒間距均為/i=0.3m,每根導體棒的電阻均為R=3Q。

開始時,導體框放在傾角為6=37°的光滑斜面上,距導體框底邊〃下方》=0.75m處存在著寬度同樣為力

的有界勻強磁場,方向垂直于斜面斜向上,磁感應強度8=2T,側視圖如圖乙所示。若由靜止釋放導體框,

當cd邊進入磁場時導體框恰好勻速運動,且運動過程中cd邊始終與磁場邊界e(/)平行。取g=10m/s2,

sin37o=:0.6,cos37°=0.8,求:

(1)“目”字形導體框的質量及漏棒進入磁場時兩端的電勢差;

(2)從釋放到油棒進入磁場時,通過油棒的電荷量;

(3)導體框穿過磁場的過程中,湖棒中產生的焦耳熱。

圖甲圖乙

【答案】(1)m=0.5kg,Uah=-1R-,(2)4=0.15C;(3)Q=0.9J

3

【解析】(1)導體框至M邊剛進入磁場區域過程,根據機械能守恒,有

12

mgsinO-H=—mv

第一根導體棒出磁場時第二根進入磁場,始終有一根導體棒在切割磁感線

I=E1

E=BLv,

M'一

解得

U“b=15V

又因為

mgsin0=BIL

解得

m=0.5kg

(2)第一根導體棒開始進入磁場至ab棒即將進入磁場的過程

3/z=vtx

通過ab棒電荷量

q=q=0.15C

(3)第一根導體棒開始進入磁場至必棒即將進入磁場過程,詔棒中產生焦耳熱

<12

IJJ

油棒穿過磁場過程中,詔棒中產生的焦耳熱

2

Q,=IRt0,h=vt2

導體框穿過磁場的過程中,必棒中產生的焦耳熱

e=e,+e2-o.9j

4.(2024?山西省名校聯考?二模)如圖所示,兩寬度不等的平行金屬導軌固定在傾角為。=30。的斜面上,

導軌足夠長且電阻不計,導軌的下端接有電容為C=2.5F的電容器,導軌所在空間被分成區域I和區域II

兩部分,兩區域的分界線為MN,區域I內的導軌粗糙,導軌間距右=0.4m,勻強磁場的方向垂直斜面向

下,區域II內的導軌光滑,間距4=02m,勻強磁場的方向垂直斜面向上,兩磁場的磁感應強度大小均為

B=lTo『=0時,開關Si斷開,開關S2閉合,長度均為0.4m的導體棒油和導體棒cd按圖示位置垂直導

軌放置,裙剛好不下滑,cd由靜止開始下滑,f=2s時,開關Si閉合,開關S2斷開。已知導體棒"的質

量班=0.1kg,電阻M=0.4Q,導體棒cd的質量根2=0-4kg,電阻不計。已知導體棒",cd始終在各

自的區域內運動,運動過程中兩導體棒始終與導軌垂直且接觸良好,最大靜摩擦力等于滑動摩擦力,重力

加速度g取10m/s2,電容器的充電可認為在瞬間完成。求:

(1)/=2s時,cd棒的速度大小;

(2)開關Si閉合,開關S2斷開的瞬間,油棒的加速度大小和方向;

(3)開關Si閉合,開關S2斷開后,系統達到穩定時,回路中的電流大小。

【答案】(1)8m/s;(2)6m/s2,沿斜面向上;(3)—A

17

【解析】(1)開關S1斷開,開關S2閉合時,設某一時刻導體棒cd的速度為V,經過短時間A片,cd棒的速

度變化量為Av,Cd棒兩端的電壓變化量為

AC/=BL2^V

電容上的電荷量變化量為

△q-CAt7

回路中的電流

/=效

導體棒cd的加速度

Av

Cl=—

Ar

根據牛頓第二定律有

m、gsin0-BIL,=m2a

解得

a=4m/s

/=2s時

v=a?=8m/s

(2)對詔棒,初始時靜摩擦力

f=m1gsin0=0.5N

f=2s,開關Si閉合,開關S2斷開時,力棒產生的電動勢

E—BL2V

回路中的電流

仍棒受到的安培力沿導軌向上,大小為

F安=BILX

開關Si閉合,開關S2斷開的瞬間,乃棒的加速度沿斜面向上,有

心一(叫gsin0+f)=m1a'

解得

a'=6m/s

(3)開關Si閉合,開關出斷開后,設系統穩定時,仍棒的加速度大小為%,cd棒的加速度大小為電,有

a2=2al

對ab棒有

BI'L、+m{gsin0-f—町q

對cd棒有

m^gsin0-BI'L1=m、a.

解得

5.(2024?山西省太原五中?一模)如圖所示,間距為L的兩條足夠長的平行金屬導軌與水平面的夾角為9,

導軌光滑且電阻忽略不計。場強為2的條形勻強磁場方向與導軌平面垂直,磁場區域的寬度為4,間距為

“2。兩根質量均為加、有效電阻均為R的導體棒。和6放在導軌上,并與導軌垂直。(設重力加速度為g)

(1)若。進入第2個磁場區域時,。以與。同樣的速度進入第1個磁場區域,求b穿過第1個磁場區域過程中

增加的動能△Ek。

(2)若。進入第2個磁場區域時,。恰好離開第1個磁場區域;此后。離開第2個磁場區域時,b又恰好進入

第2個磁場區域。且a、b在任意一個磁場區域或無磁場區域的運動時間均相同。求6穿過第2個磁場區域

過程中,兩導體棒產生的總焦耳熱Q。

(3)對于第(2)間所述的運動情況,求。穿出第4個磁場區域時的速率v。

m

【答案】(1)=mgd}sin0(2)Q=mg(4+d2)sin6(3)v=匕=4野"sin8-/」

【解析】⑴。和6不受安培力作用,由機械能守恒知:

^Ek-mgdxsin0

⑵設導體棒剛進入無磁場區域時速度為W,剛離開無磁場區域時的速度為V2,由能量守恒知

在磁場區域中:

;mv;+Q=;mv^+mg4sin0

在無磁場區域中:

gmv^=gmv^+mgd0sin0

解得:

Q-777g?4)sin0

⑶有磁場區域,棒a受到合力:

F=mgsin0-BIl

感應電動勢:

s=Blv

感應電流:

2R

解得:

F=mgsin0-2Hv

根據牛頓第二定律,在f到f+4時間內:

F

EAv=工一Nt

m

則有:

R2]2

=ZgsinO-U^At

2mR

解得:

§2/2

匕=gsin6-^^4

又在無磁場區域,根據勻變速直線運動規律有:

v2-v1=gtsin0

且平均速度:

三二=生

2t

聯立解得:

22

41ngRd2.八Bld

Vi=—■rsin0--------L]

52/248mR

由題意知:

4mgRd,.八B212dl

y二M二一巖sm0---------

B212dl8mR

6.(2024?陜西省寶雞市?三模)如圖所示,兩條平行傾斜放置的光滑金屬導軌,間距工=0.5m,與水平面

間的夾角為8,左端接一阻值7?=1.5Q的定值電阻,導軌所在空間存在垂直導軌平面斜向上、磁感應強度B=2T

的勻強磁場。一個長L=0.5m、質量機=lkg、阻值『0.5。的金屬桿垂直放在導軌上,金屬桿在平行于導軌向

上的拉力廠作用下,由靜止開始沿導軌平面向上做加速度。=4m/s2的勻加速運動,Z=ls時拉力廠的功率達到

P并保持不變。之后,金屬桿繼續加速直至做勻速運動。若電磁感應產生的磁場及導軌的電阻均忽略不計,

金屬桿和導軌始終垂直且接觸良好。已知sin敘0.3,重力加速度g取10m/s2。求:

(1)uls后拉力尸的功率尸;

(2)金屬桿在磁場中勻速運動時速度V。

R

【答案】(1)36W;(2)6m/s

【解析】(1)設uls時金屬桿的速度為匕,金屬桿產生的感應電動勢為耳,感應電流為人,安培力大小為

巴,由法拉第電磁感應定律可得

E[=BL%

由閉合電路歐姆定律

1R+r

此時安培力大小為

F、=BIJ

其中

匕=at

對金屬桿受力分析,根據牛頓第二定律可得

F-mgsin。一耳=ma

則Z=ls后拉力F的功率為

P=FV[

聯立可得

P=36W

(2)設勻速運動時拉力大小為F',感應電動勢為七2,感應電流為人,安培力大小為歹2,則由法拉第電

磁感應定律可得

E、—BLv

由閉合電路歐姆定律

2—R+r

對金屬桿由平衡條件

F'=mgsin。+月

其中

P=F'v,F2=BI2L

解得金屬桿在磁場中勻速運動時的速度為

v=6m/s

7.(2024?陜西漢中市漢臺區?三模)(多選)如圖甲所示,一電阻不計且足夠長的固定光滑平行金屬導軌

MN、P0間距下端接有阻值R=2Q的電阻,導軌平面與水平面間的夾角0=30。。整個裝置處于方向

垂直于導軌平面向上的勻強磁場中。一質量機=0.2kg、阻值的金屬棒垂直于導軌放置并用絕緣細線通

過光滑的定滑輪與質量M=lkg的重物相連,左端細線沿NM方向。棒由靜止釋放后,沿方向位移尤與

時間/之間的關系如圖乙所示,其中仍為直線。已知棒在0~0.3s內通過的電荷量是0.3~0.4s內通過電荷量

的2倍,g取10m/s2,下列說法正確的是()

A.圖乙中。點的縱坐標是0.6m

B.棒在0~0.3s內通過的電荷量是0.18C

C.磁感應強度B=9T

D.電阻7?在0~0.4$內產生的熱量。=1.8J

【答案】AD

【解析】A.通過導體棒的電荷量為

-_A,BLAx

q-11——

R+rR+r

棒在0~0.3s內通過的電荷量是0.3~0.4s內通過電荷量的2倍,則有

BxaL_2B(0.9-xa)£

R+rR+r

解得

x,=0.6m

故A正確;

BC.0.3s后棒做勻速運動,則受力平衡,有

Ax。.

v=——=3m/s

At

Mg=mgsin0+BIL

根據閉合電路的歐姆定律得

BLv

1T二------

R+r

解得

B=3T

q=^^=0.6C

R+r

故BC錯誤;

D.在0~0.4s內,對導體棒由動能定理得

12

Mgx-mgxsin-W=—(m+M)v

根據功能關系有

W=Q'

在電路中,電阻R在0~0.4s內產生的熱量

Q=-------Q1

R+r

聯立解得

Q=1.8J

D正確。

故選AD。

【考向二:感生】

1.(2024?青海省海南藏族自治州?二模)CPU卡是一種基于芯片的智能卡,內部集成了處理器、存儲器

和加密模塊等多個組件,正常工作電流約為5mA,其天線為如圖所示的線圈,線圈尺寸從內到外逐漸變大,

共3匝,其邊長分別為2.0cm、2.2cm和2.4cm,正常工作時勻強磁場垂直穿過線圈,磁感應強度的變

化率為T/S,則CPU卡工作時的功率約為()

B.4.2mW

C.7.3mWD.9.3mW

【答案】C

【解析】根據法拉第電磁感應定律,可得

22

E=E,+E,+E3=—£.+—£/+—L,=1.46V

123&iz一Ar3

功率為

P=UI=1A6Vx5mA=7.3mW

故選C。

2.(2024?山西省名校聯考?一模)如圖所示,相距為/的兩光滑平行金屬導軌傾斜固定,傾角為。,頂端

接有阻值為尺的電阻,電阻為廠的金屬棒尸。垂直導軌置于其上。在H、導軌與尸。間有一面積為S的區域,

該區域內存在垂直導軌平面向下的均勻磁場,磁感應強度的大小8隨時間/的變化關系為5=H(左為正常

量)。在PQ的下方有一寬度為L勻強磁場區域,區域邊界仍利cd均與導軌垂直,磁感應強度的大小為穌,

方向也垂直導軌平面向下。將尸。由靜止釋放,/=0時尸0恰好以速度V通過“b,之后以不變的速度通過

成cd區域。設尸。與導軌始終垂直并接觸良好,忽略不計兩導軌的電阻,重力加速度為g。求:

(1)P。的質量;

B°l(即v+⑹L_(B/v+⑹2

(Blv+kS)0RL

【答案】(1)mo(R+r)vQ~~~(7?r)2v-

g(R+r)sin。+

【解析】(1)金屬棒在勻強磁場中運動的過程中,設通過金屬棒的電流大小為/,在時間/內,金屬棒的位

移為x,有

x=vt

在時間才時刻,對于變化磁場8,穿過回路的磁通量為

a>=ktS

對于勻強磁場綜,穿過回路的磁通量為

/=BQIX

回路的總磁通量為

?=。+穌

聯立可得,在時刻f穿過回路的總磁通量為

①t=ktS+Bolvt

在/至|J,+的時間間隔內,總磁通量的改變量為

A^=(fcS+B0Zv)Ar

由法拉第電磁感應定律得,回路中感應電動勢的大小為

由閉合電路的歐姆定律得

1=^—

R+r

聯立可得

_BQlv+kS

R+r

設金屬棒的質量為加,由于金屬棒在右側導軌上做勻速運動,則有

mgsin0=B0Il

解得

m=(BJv+kS)-------------

g(H+r)sin。

(2)金屬棒在磁場穌中從"向右運動到cd的過程中,設運動時間為,,通過電阻的電荷量為4,阻值為H

的電阻上產生的熱量為。,則有

L=vtr,q=If,Q=I2Rtr

解得

=(即v+AS)L_(B0/v+⑹2RL

1(R+r)v'Q-—(R+r)2v-

3.(2024?陜西省渭南市?一模)如圖所示,將一通電螺線管豎直放置,螺線管內部形成方向豎直向上、

磁感應強度大小5=H的勻強磁場,在內部用絕緣輕繩懸掛一與螺線管共軸的金屬薄圓管,則()

A.從上向下看,薄圓管中的感應電流為逆時針方向

B.薄圓管有垂直于軸線方向向內收縮趨勢

C.輕繩對薄圓管的拉力的合力大于薄圓管的重力

D.輕繩對薄圓管的拉力隨時間減小

【答案】B

【解析】A.由題意可知,穿過圓管的磁通量向上且增加。根據楞次定律定律可知,感應電流的磁場要阻礙

其增加。所以感應電流的磁場方向豎直向下,根據右手定則可知,從上向下看感應電流的方向為順時針,

故A錯誤;

B.由題意可知,穿過圓管的磁通量向上且增加。根據楞次定律定律的“增縮減擴”可知,其薄圓管由垂直

于軸線方向向內收縮趨勢,故B正確;

CD.根據左手定則可知,圓管中各段所受的安培力方向指向圓管的軸線,則輕繩對圓管的拉力的合力始終

等于圓管的重力,不隨時間變化,故CD錯誤。

故選B。

【考向三:聯系實際】

1.(2024?青海省協作聯考?一模)手壓式自發電手電筒(如圖甲所示)是一種節能產品,其微型發電系

統應用了法拉第電磁感應原理,只要用手輕輕按壓發電手柄,就可以給電阻為R(可認為恒定不變)的小

燈泡供電。圖乙是手壓式自發電手電筒的原理圖,半徑為L的金屬圓環導體通過手壓從靜止開始繞圓心。沿

順時針方向轉動,其角速度。與時間/的關系為。(尸為正常數)。電阻為「、長度為L的導體棒,一

端與圓環連接,并能隨著圓環一起繞。點轉動,整個裝置置于垂直于紙面向里、磁感應強度大小為3的勻

強磁場中。小燈泡通過電刷連接在圓環和。點之間,從靜止開始按壓發電手柄,經過時間辦,小燈泡正常

發光,此后按壓發電手柄,圓環轉動的角速度不變,不計其他電阻。求:

(1)小燈泡正常發光時,通過小燈泡的電流大小及方向;

(2)小燈泡的額定功率。

【答案】⑴]貌吊通過小燈泡的電流方向自上而下;⑵八黑鬻

【解析】(1)%時刻導體棒的角速度

為=夕o

此時產生的感應電動勢

17

E=-BI:(DQ

感應電流大小

1=^—

R+r

解得

-2(7?+r)

由右手定則可知,通過小燈泡的電流方向自上而下。

(2)小燈泡的額定功率

P=I-R

解得

p=B^XR

4(R+r)2

2.(2024?山西省?一模)(多選)如圖是手壓式自發電手電筒的原理圖。輕輕按壓發電手柄,圓形導體環

(圓心與環間固定有三根導體棒)就會繞圓心。沿順時針方向轉動。保持一定的按壓頻率,導體環就會以

角速度。勻速轉動。不考慮小燈泡電阻的變化,下列說法正確的是()

A.通過燈泡的電流隨時間做周期性變化

B.通過燈泡的電流方向始終從上向下

C.若環以2。的角速度轉動,燈泡中的電流變為原來的2倍

D.若環以2口的角速度轉動,燈泡中的電流變為原來的4倍

【答案】BC

【解析】AB.導體棒切割磁感線產生感應電動勢從而使閉合回路中產生感應電流,由于環順時針轉動,根

據右手定則可知,產生感應電流的方向始終不變,通過燈泡的電流方向始終從上向下,而導體棒以恒定

的角速度轉動,產生的感應電動勢大小也始終不變,故A錯誤,B正確;

CD.設圓環的半徑為R,則產生的感應電動勢的大小為

1,

E=-BR2CO

2

可得電路中感應電流大小為

[_EBKCO

一可—24

可知,當環以2。的角速度轉動,燈泡中的電流變為原來的2倍,故C正確,D錯誤。

故選BC。

3.(2024?陜西省商洛市?四模)2024年全國兩會勝利閉幕,其間代表委員坦誠建言、共商國是,在認真

履職盡責中踐行全過程人民民主,積極為扎實推進中國式現代化建設貢獻智慧和力量。一系列利國利民政

策出爐,一大批熱氣騰騰的兩會熱詞隨之涌出,其中“新能源”這個詞簡直熱到爆表。“新能源”在兩會

上的熱議標志著中國以電動汽車為代表的新能源汽車行業正式進入暖春。電動汽車的優點是自帶能量回收

系統。汽車正常行駛時,電動機消耗電能牽引汽車前進。當剎車時切斷電源,由于慣性,給電動機一個動

力,使電動機變成發電機,其工作原理可以簡化為如圖所示,一對與電容器平行的金屬導軌水平放置,導

軌間距L=0.2m,電阻不計。導軌通過單刀雙擲開關分別和電源、超級電容器組成閉合回路。一根質量

m=0.5kg,電阻不計的金屬桿仍垂直導軌水平放置,與導軌接觸良好且與導軌間的動摩擦因數〃=0.2。

整個裝置處于垂直于導軌平面向外的勻強磁場中,磁感應強度大小3=2T,已知電源電動勢E=6V,內

電阻r=10,超級電容器的電容C=5F,重力加速度g=10m/s2。

(1)如果開關接1,求閉合瞬間桿的加速度;

(2)如果開關接1,求桿能達到的最大速度;

(3)如果開關接2,同時給桿一恒定水平向右的力尸=3.6N,求電容器上電量Q與時間r的變化關系(電

容器初始電量為零)。

【答案】(1)2.8m/s2;(2)8.75m/s;(3)Q=4t(C)

【解析】(1)開關閉合瞬間,根據閉合電路歐姆定律有

安培力

FA=BIL

由牛頓第二定律

FA-Ring=ma

代入數據可得

a=2.8m/s2

(2)當桿〃。達到最大速度Vm時,由電磁感應定律可得

Eab=BLvm

r

BLT-/Limg

聯立公式解得

Vm=8.75m/s

(3)設金屬桿曲的速度大小為也則感應電動勢為

EJBLv

平行板電容器兩極板之間的電勢差為

U=E'ab

設此時電容器極板上積累的電荷量為

Q=CU

電流定義

/〃=也

Ar

此時,設其加速度大小為儲,根據牛頓第二定律有

F—/jmg—BI"L=ma'

2

「BCI3^

r-Limg----------=ma

,Nt

又因為

Av

cit——

A?

聯立代入數據可得

Q=4t(C)

4.(2024?青海省百所名校?二模)電磁炮的工作原理可簡化為如圖所示的電路,間距為L的水平平行金

屬導軌尸。、PQ'間存在垂直導軌平面向下、磁感應強度大小為B的勻強磁場,軌道左端接一電動勢為民

內阻為廠的直流電源。將一質量為機、電阻為R的金屬棒a從導軌上某處由靜止釋放,當金屬棒。到達QQ'

離開導軌時恰好達到最大速度,金屬棒a在運動過程中始終與導軌垂直且接觸良好,忽略所有摩擦及金屬

導軌的電阻。求:

(1)通過電源正極的電荷量

(2)金屬棒。產生的熱量Q。

P一〔B。

P'Q'

mEmRE2

[答案](1)/密;(2)2叫R+「)

【解析】(1)設金屬棒〃某時刻速度大小為也此時通過金屬棒的電流

.E-BLv

i=----------

R+r

隨著金屬棒速度增大,通過金屬棒的電流減小,由牛頓第二定律知

iBL—ma

可知金屬棒做加速度減小的加速運動,金屬棒到達QQ'時,=0,設金屬棒的最大速度為%,金屬棒在水

平導軌上運動的過程中回路的平均電流為7,結合動量定理有

E=B%

IBL-t=mvm-0

q=It

解得

(2)設全過程電源產生的總電能為E總,電路產生的總熱量為。總,根據能量守恒有

E總=qE

12

E總=。總+^"1Vm

R

Q=

R+r

解得

mRE~

^-2B2£2(7?+r)

【考向五:與動量綜合】

1.(2024?寧夏銀川一中?三模)(多選)如圖所示,間距為L的兩平行光滑長直金屬導軌水平放置。abed

區域有勻強磁場,磁感應強度大小為3,方向豎直向上。細金屬桿N靜置于磁場中,磁場外的細金屬桿M

以速度力向右運動,此后兩桿在磁場內未相撞且N出磁場時的速度為己知兩桿的質量均為機,在導

軌間的電阻均為A,兩金屬桿與導軌接觸良好且始終與導軌垂直,感應電流產生的磁場及導軌的電阻忽略

T2

A.N在磁場內運動過程中的最大加速度為之上國

2mR

B.N在磁場內運動過程中通過回路的電荷量為‘也

9

c.M中產生焦耳熱的最小值為《勿4

9

2〃2VR

D.N的初始位置到ab的最小距離為一餐

3B2U

【答案】ABD

【解析】A.根據題意可知,M進入磁場后,M做減速運動,N做加速運動,則M剛進入磁場時,N在磁

場中的加速度最大,則有

E

E=BLv,1=-F=BIL

02R

聯立可得

廠“%

r—

2R

由牛頓第二定律有

F=mam

解得

BaE=--------

m2mR

故A正確;

B.根據題意,對N由動量定理有

3

q=

聯立可得

解得

故B正確;

C.根據題意可知,若N出磁場時,M恰好追上N,則回路中產生的焦耳熱最少,設此

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論