




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
TheOptimizationModule?Copyright2014COMSOL.Anyoftheimages,text,andequationsheremaybecopiedandmodifiedforyourowninternaluse.Alltrademarksarethepropertyoftheirrespectiveowners.See/trademarks.OverviewTheCOMSOL?4.4ProductSuiteTheOptimizationModuleAdd-ontoCOMSOLMultiphysicsGeneral-purposepackage,notapplication-specificOptimizationforElectrical,Mechanical,Fluid,andChemicaldevicesandprocessesCombineswithanyCOMSOLMultiphysicsModuleTheOptimizationModuleContains:UserinterfacesforsettingupoptimizationtasksOptimizationsolversExamplemodelsfromdifferentfieldsWhatisOptimization?TheimprovementofanobjectivefunctionbychangingcontrolvariableswhilemaintainingasetofconstraintsObjectivefunction(costfunction)Anyreal-valuedscalaroutputfromasolvedCOMSOLmodelMass,displacement,pressuredrop,resistance,power,etc...Controlvariables(optimizationvariables,designvariables,...)Anycontinuoussetofreal-valuedinputstothemodelDimensions,materialdistribution,materialproperties,etc...ConstraintsAnyequalityorinequalityconditionthatcanbeexpressedintermsofthesolvedmodel,orthecontrolvariablesPeakstress,minimumsize,maximumtemperature,etc...QuickIntroductiontoOptimizationintheCOMSOLDesktopHowdoweoptimize?StartwithasolvedCOMSOLmodelDefineyourobjectfunction:Whatdoyouwanttomakebetter?Choosethedesignvariables:Whatdoyouwanttochange?Specifyyourconstraints:Whatlimitscannotbeexceeded?Optimize!Tuningfork,Desiredresonanceat440HzStartwithanexistingmodelForclarity,theCOMSOLDesktopishereshownasitappearsonalow-resolutionscreen.AddtheOptimizationStudyfeatureSelectfromasuiteofoptimizationalgorithmsSettoleranceandthemaximumnumberofmodelevaluationsIfsolvingonacluster,candistributesolutionsandruninparallelSpecifyanobjectivefunctionfreq:theresonancecomputedbytheeigenfrequencysolverTheobjectiveistomaketheresonantfrequency440HzMinimize,maximum,maximizetheminimum,minimizethemaximum,andhandlesumsofobjectivefunctionsPickcontrolvariablesandconstraintsGlobalParametersetsthetuningforklength,specifyinitialvalueChooseupperandlowerbounds(constraints)onthecontrolvariablesCanaddotherconstraints,ifdesiredSolve,andthenextractsolutionOptimizationTutorialsandExamplesGettingStartedExample:TuningForkAdjustthelengthofthearmsofatuningforksuchthatthefirstresonanceisat440HzApproximategradient,sincethemodelisremeshedduringtheoptimizationBOBYQASolverCanalsobedoneviatheLiveLink?productsandcontrolledfromvariousCADsoftware,MATLAB?,andExcel?./model/tuning-fork-computing-the-eigenfrequency-and-eigenmode-8499SizeOptimization:
BanddispersioninamicrochannelMinimizethedifferenceistransittimebetweeninsideandoutsideSizeOptimization:3DFlywheelFindholeradiiwhichminimizeflywheelmassMaximumvonMisesstressmustnotexceedyieldlimit/blogs/using-gradient-free-optimization/SizeOptimizationofaFlywheel,
withAdvancedConstraintsMakestressdistributionasuniformalongtheradiusaspossibleConstrainthemassnottochangeConstrainthemomentofinertianottochangeGradient-basedapproach/model/optimizing-a-flywheel-profile-4356SizeOptimization:
MinimizingS11ofanAntenna/model/optimizing-a-bowtie-antenna-14435ChangeFlareAngleandArmHeightGradient-FreeApproach,becauseremeshingisrequiredShapeOptimization:
OptimizinganAcousticHornMaximizethesoundintensityalongtheaxisofthehornTheshapeofthehornisdescribedbyasumofsinewavesTruncatedFourierseriesTheMovingMeshfunctionalityisusedtoavoidremeshingthedomainGradient-Basedapproach/model/optimizing-the-shape-of-a-horn-4353ParameterEstimation:Findingthematerialpropertiesbaseduponexperimentaldatahttp:///model/transient-optimization-fitting-material-properties-of-a-wall-10905http:///model/curve-fitting-material-model-data-to-experimental-data-5886http:///model/determining-arrhenius-parameters-using-parameter-estimation-10305/model/degradation-of-dna-in-plasma-1391TransientanalysisMinimizeleastsquaresdifferencewithexperimentalresultsLevenberg-MarquardtInverseProblem:ImagingImagingofsoilpropertiesbasedonpumpingexperimentsFindthepermeabilitypatternmostconsistentwithexperimentaldataReconstructinteriordatabaseduponobservationsfromtheexterior/model/aquifer-characterization-through-inverse-modeling-from-pump-tests-4410TopologyOptimization:PorousCatalystObjectiveistomaximizethereactionratewhileminimizingtheamountofcatalystwithinthereactorInitialcatalystdistributionishomogeneousTopologyoptimizationadjustsamountofcatalystwithineachmeshelement/model/optimization-of-a-catalytic-microreactor-4401TopologyOptimization:TelsaMicrovalveMaximizeratioofflowlefttorightcomparedtoflowrighttoleftforsamepressuredrop./model/topological-optimization-of-a-tesla-microvalve-14513TopologyOptimization:
MinimizeBeamCompliance/model/topology-optimization-7428MinimizethecomplianceAddconstraintontotalmaterialSIMPmethodMathematicalOptimization:MinimizeaFunctionχ1χ2
NotableCOMSOLConferencePapersonTopologyOptimizationTopologyOptimizationinMultiplePhysicsProblems,O.Sigmund,DTUMechanicalEngineering,/papers/1790/MultiphysicsTopologyOptimizationofHeatTransferandFluidFlowSystems,E.Dede,ToyotaResearchInstituteofNorthAmerica,/papers/6282/SimulationofTopologyOptimizedElectrothermalMicrogrippers,O.Sardan,D.Petersen,O.Sigmund,&P.Boggild,DTUMechanicalEngineering,/papers/5346/ImplementationofStructuralTopologyOptimizationinCOMSOL,B.Lemke,Z.Liu,&J.G.Korvink,DepartmentofMicrosystemsEngineering,UniversityofFreiburg,/papers/1543/TopologyOptimizationofDielectricMetamaterialsBasedontheLevelSetMethodUsingCOMSOLMultiphysics,M.Otomori&S.Nishiwaki,KyotoUniversity,/papers/12519/IndustrySuccessStory:TopologyOptimizationLeadstoBetterCoolingExtractfromCOMSOLNews2012.?2012COMSOL.Allrightsreserved.SolidWorksisaregisteredtrademarkofDassaultSystèmesSolidWorksCorporationoritsparent,affiliates,orsubsidiaries.AluminumcoldplatewithouthierarchicalmicrochanneltopologyAluminumcoldplatewithhierarchicalmicrochanneltopologyModeledaluminumcoldplatewithhierarchicalmicrochanneltopologyAluminumcoldplatesaremountedincarstocombatheatproblems,requiringoptimalcoolingchanneltopologyforminimizedplatesizePerformedCFDandHeatTransferanalysesinconjunctionwithLiveLinkTM
forSolidWorks?tocreateaprototypeusingoptimizedtopologyCOMSOLNews2012:EricDede,ToyotaResearchInstitute,AnnArbor,MIOptimizationModuleTheory,IntroductionTheOptimizationinterfacecandefinecontrolvariablefields,integralobjectives,andlocalconstraintsChangethespatialdistributionofmaterial,subjecttolocalbounds,tominimizemasswhileconstrainingsystemcomplianceThefamilyofoptimizationsolversOptimizationModuleSearchwithoutfindingGradientsAnalyticGradientMethodsMonte-CarloCoordinateSearchMMALevenberg-MarquardtNelder-MeadBOBYQARandomSearchSearchoneaxisatatime1storderapproximategradient2ndorderapproximategradientSNOPTLinearconvergenceQuadraticconvergenceLeast-Squaresproblemsonly(veryfast)ApproximateGradientMethodsWhatisthegradient?ThegradientisthederivativeoftheobjectivefunctionwithrespecttothecontrolvariablesGradientsoftheobjectivecanbecomputedeither:ApproximatelyCoordinatesearch:Finite-differenceinonecontrolvariableatatimeNelder-Mead:Evaluates(N+1)pointsofanN-dimensionaldesignspaceandconstructsasimplex,improvesworstpointBOBYQA:MakesprogressivelocalquadraticapproximationsAnalyticallyMMAandSNOPTusetheAdjointmethodtocomputeexactgradientCancomputegradientswithrespecttoallcontrolvariablesatonceRequiressmoothanddifferentiableobjectiveandconstraintfunctionsNoremeshingGradientbasedmethodsstartatapointwithinthedesignspaceandimprovethedesignDesignSpaceχ1χ2ObjectiveFunctionf(χ)(1)Startatanexistingdesign&computegradientdirection(2)Searchalonggradient&findminimumalongline(3)Repeatuntilnomoreimprovementispossible(1)(2)(3)ComparisonofAlgorithmsApproximateGradientAnalyticGradientObjectiveFunctionAnyscalaroutputMustbebothsmoothanddifferentiableDesignVariablesAnything,includinggeometricdimensionsAnythingthatdoesnotresultinremeshingofthegeometryRemeshingYesNoConstraintsCanonlyconstrainscalaroutputsConstraintsmustbedifferentiableandsmooth,butcanbeateachpointinspacePossibleanalysesAnycombinationofalldifferentanalysistypesAnystudywithonlyoneof:
Stationary,Transient,orFrequency-DomainRelative
PerformanceIncreasesexponentially
withthenumberofdesignvariablesPerformanceisnotverysensitivetothenumberofdesignvariablesTheMonte-Carlomethodsharesalloftheseproperties,butwillhavetheslowestconvergenceWhichoptimizationsolvertouse?Docontrolvariableschangethemesh?Constraintsonthesolution?Arethereanyconstraints?TopologyOptimization?SNOPTMMALevenberg-MarquardtBOBYQASmoothlyvaryingobjective?Nelder-Mead(orCoordinateSearch)MonteCarloYesYesYesYesYesNoNoNoNoVeryrandomNoisyOptimizationUserInterfacesTheOptimizationstudystepCentralcontrolpanelforalloptimizationChooseandtunesolversSpecifyglobalobjectivefunctions,controlparametersandconstraintsEnable/disablecontributionsfrominterfacesTheOptimizationinterfaceSetupgeneralobjectivecontributions,
includingleast-squaresDefinecontrolvariablefieldsSpecifygeneralconstraintsOptimizationModuleTheory,AdvancedDerivative-freesolversDirectsearchNelder-MeadCoordinatesearchTrustRegionBOBYQADerivative-FreeOptimizationSolversRequireonlyobjectivefunctionvalues,
noderivativesControlanything,includingtheCADgeometryRobustbutexpensiveParallelonclustersGradient-basedGeneral-purposeSNOPTMMALeast-squaresLevenberg-MarquardtGradient-BasedOptimizationSolversUsegradientinformationtocontrolsearchdirectionStationaryandtransientsolverscomputegradientsefficientlyManycontrolvariables(fields)CommonOptimizationTasksOptimizationTasksPureOptimizationOptimalDesignParameterSelectionGeometricOptimizationSizingShapeOptimizationTopologyOptimizationTargetMatchingInverseProblemsParameterEstimationImagingObjectiveFunctionsinCOMSOLGlobalObjectivesAcceptsanyglobalexpression–ofteninvolvingcouplingoperatorsExample:classicaloptimizationIntegralObjectivesIntegratesanexpressionoveradomain,boundary,edgeorpointExample:minimizingtheweightofastructureProbeObjectivesEvaluatesanexpressionatgivencoordinatesLeast-SquaresObjectivesComparesanexpressiontomeasuredvaluesinafileExample:fittingreactionconstantstomatchmeasuredconcentrationsControlVariablesinCOMSOLGlobalControlVariablesChooseanyexistingmodelparametersintheOptimizationstudystepWorkswithallsolversUsedwithderivative-freesolverstocontrolCADgeometryparametersControlVariableFieldsControlvariablesareassociatedwithpositionsinthegeometryFiniteelementinterpolationgivesmanydegreesoffreedomRequireusingtheOptimizationInterfaceOnlyworkswithgradient-basedsolversConstraintsinCOMSOLBoundsSetlimitsdirectlyonthecontrolvariables,oftenrequiredbysolversDesignconstraintsSetrelationsbetweenthecontrolvariablesDonotrequireevaluationofanyPDEsolutionPerformanceconstraintsSetconditionsonthePDEsolutionvariablesSameformatasanobjectivefunctionandasexpensivetoevaluateSensitivityEvaluationinCOMSOLSymbolicmathmachineryallowsefficientgradientevaluationAslongasallexpressionsaredifferentiableAdjointsensitivityFastevaluationofthegradientofanyobjectivefunctionwithrespecttoacontrolvariablefieldForwardsensitivityFastevaluationofthederivativeofaPDEsolutionfieldwithrespecttoindividualcontrolvariablesGradientofobjectivefunctionsiscomputedusingthechainruleNumericalgradientFall-backwhenexpressionsarenotsymbolicallydifferentiableTheSolversoftheOptimizationModuleAbouttheSNOPTSolverSNOPT=SparseNonlinearOPTimizerDevelopedbyP.E.Gill,W.MurrayandM.A.SaundersatStanfordUniversitySequentialQuadraticProgramming(SQP)methodSolvesasequenceofapproximatingquadraticprogrammingproblemswithlinearizedconstraintsOuterloopusesaquasi-NewtonstrategywhereanapproximateHessianisupdatedusinggradientsevaluatedatconsecutivestepsAbouttheMMASolverMMA=MethodofMovingAssymptotesDevelopedbyKristerSvanbergatKTH(RoyalInstituteofTechnology,Sweden)COMSOLversionismorespecificallyGCMMA=GloballyConvergentMMASolvesasequenceofconvexapproximationsAllowsgeneralnonlinearconstraintsEachapproximationisgeneratedfromlineardataatcurrentpointAllintermediatepointsarefeasible,unlessthefeasiblesetisemptyAbouttheLevenberg-MarquardtSolverSolverforleast-squaresproblemsRequiresanobjectivefunctiononleast-squaresformDoesnotallowanyconstraintsTrust-regionGauss-NewtonmethodComputesthegradientofeachterminthesumofsquaresseparatelyApproximatestheHessianfromfirst-orderderivativesonlyOften
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 江蘇省無錫市積余中學2025年初三年級8月摸底考試數學試題含解析
- 重慶市江津區2025年初三第五次適應性訓練數學試題試卷含解析
- 重慶市重點中學2025年初三下學期期末仿真模擬生物試題含解析
- 互聯網時代干部培訓策略與實施
- 棗強中學高一上學期第三次月考生物試題
- 目標控制程序培訓資料
- 2025租賃合同范本:測量儀器出租合同
- 2025筆記本電腦買賣合同
- 2025財經大學服務合同(教室租賃類)
- 2025年建筑項目基礎施工合同范本
- 導線的連接精品課件
- 論提高行政效率的途徑 開題報告
- 059.商業計劃書和可行性報告精制食油廠年產萬噸精制山茶油項目可行性研究報告
- 米度盾構導向系統
- [說明]心血管內科(心內科)_見習教案_6_動脈粥樣硬化和冠狀動脈粥樣硬化性心臟病
- Q∕GDW 11257.3-2020 熔斷器技術規范 第3部分:跌落式熔斷器
- 汽車焊接夾具設計外文文獻翻譯
- 濃縮機的選擇與計算
- 滬教版六年級下冊單詞表
- 紅星美凱龍租賃合同
- 最新投標書密封條
評論
0/150
提交評論