大連外國語大學《人工智能與藥物設計》2023-2024學年第二學期期末試卷_第1頁
大連外國語大學《人工智能與藥物設計》2023-2024學年第二學期期末試卷_第2頁
大連外國語大學《人工智能與藥物設計》2023-2024學年第二學期期末試卷_第3頁
大連外國語大學《人工智能與藥物設計》2023-2024學年第二學期期末試卷_第4頁
大連外國語大學《人工智能與藥物設計》2023-2024學年第二學期期末試卷_第5頁
已閱讀5頁,還剩3頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

學校________________班級____________姓名____________考場____________準考證號學校________________班級____________姓名____________考場____________準考證號…………密…………封…………線…………內…………不…………要…………答…………題…………第1頁,共3頁大連外國語大學

《人工智能與藥物設計》2023-2024學年第二學期期末試卷題號一二三四總分得分一、單選題(本大題共30個小題,每小題1分,共30分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、人工智能在物流配送中的路徑規劃方面具有應用潛力。假設要為快遞配送車輛規劃最優路徑,以下關于其應用的描述,哪一項是不準確的?()A.考慮交通狀況、貨物重量和配送時間等因素,優化路徑選擇B.利用啟發式算法可以在較短時間內找到近似最優的配送路徑C.人工智能規劃的路徑一定是最短的,不會受到任何突發情況的影響D.實時更新路況信息,動態調整配送路徑,提高配送效率2、人工智能中的情感識別不僅可以應用于人類的情感分析,還可以用于動物的行為研究。假設我們要通過動物的行為來判斷其情感狀態,以下關于動物情感識別的說法,哪一項是正確的?()A.動物的情感表達和人類完全相同B.可以直接使用人類情感識別的模型和方法C.需要結合動物的生理特征和行為模式進行分析D.動物的情感識別沒有實際應用價值3、人工智能在金融領域的應用越來越廣泛,如風險評估、投資決策和欺詐檢測等。以下關于人工智能在金融領域應用的描述,不準確的是()A.可以通過分析大量的金融數據,更準確地評估風險和預測市場趨勢B.能夠為投資者提供個性化的投資建議,優化投資組合C.人工智能在金融領域的應用完全消除了風險和錯誤,保障了金融交易的絕對安全D.金融機構在采用人工智能技術時,需要考慮合規性和監管要求4、人工智能在金融風險管理中的應用逐漸增多。假設要利用人工智能模型預測市場風險,以下關于模型評估指標的選擇,哪一項是最重要的?()A.準確率,即模型正確預測的比例B.召回率,即模型正確識別出風險的比例C.F1值,綜合考慮準確率和召回率D.均方誤差,衡量模型預測值與實際值之間的差異5、在強化學習中,智能體通過與環境進行交互并根據獎勵來學習最優策略。假設一個機器人要在一個復雜的迷宮環境中找到出口,每次到達出口會獲得高獎勵,碰到墻壁會獲得低獎勵。在這種情況下,以下哪種強化學習算法可能更適合訓練機器人找到最優路徑?()A.Q-learning算法,通過估計狀態動作值來選擇動作B.SARSA算法,基于當前策略進行學習C.策略梯度算法,直接優化策略D.蒙特卡羅方法,通過多次試驗估計價值6、在人工智能的異常檢測任務中,例如檢測網絡中的異常流量或金融交易中的欺詐行為。假設正常數據的模式較為復雜,而異常數據相對較少且具有多樣性。以下哪種方法在這種情況下更適合進行異常檢測?()A.基于統計的方法,設定閾值判斷異常B.無監督學習方法,自動發現異常模式C.監督學習方法,使用有標注的異常數據進行訓練D.人工檢查所有數據,識別異常7、在人工智能的圖像語義分割任務中,需要將圖像中的每個像素分配到不同的類別,例如將一幅街景圖像中的道路、建筑物、車輛等區分開來。假設圖像中的物體邊界模糊、類別多樣,以下哪種方法能夠提高語義分割的精度?()A.使用更高分辨率的圖像進行訓練B.采用簡單的分割算法,降低計算復雜度C.忽略物體邊界的像素,只關注主要區域D.不進行任何預處理,直接對原始圖像進行分割8、在人工智能的研究中,遷移學習是一種有效的技術。假設要將一個在大規模圖像數據集上訓練好的模型應用于醫學圖像分析,以下關于遷移學習的描述,正確的是:()A.可以直接將原模型應用于新的醫學圖像任務,無需任何調整B.由于數據領域差異較大,遷移學習在這種情況下不可能有效C.對原模型進行適當的微調,并利用少量的醫學圖像數據進行再訓練,可以提高模型在新任務上的性能D.遷移學習只能應用于相似的數據類型和任務,不能跨越不同領域9、人工智能在教育領域有潛在的應用,例如個性化學習系統。假設要為學生提供個性化的學習路徑,以下哪種數據對于系統的設計最為關鍵?()A.學生的考試成績B.學生的學習時間C.學生的學習風格和偏好D.學校的課程設置10、在人工智能的圖像生成任務中,例如生成逼真的人臉圖像或風景圖像,假設需要生成具有高度細節和真實感的圖像。以下哪種技術或模型在圖像生成方面表現較為出色?()A.生成對抗網絡(GANs),通過對抗訓練生成圖像B.自編碼器(Autoencoder),壓縮和解壓縮圖像C.傳統的圖像處理算法,如濾波和邊緣檢測D.隨機生成像素值來創建圖像11、人工智能中的多模態學習旨在融合多種不同類型的數據,如圖像、文本和音頻。假設要開發一個能夠同時理解圖像和文本內容的系統,以下哪個挑戰是最突出的?()A.數據的標注和對齊B.模型的訓練效率C.不同模態數據的特征提取D.模型的可擴展性12、在人工智能的知識圖譜構建中,需要整合大量的結構化和非結構化數據。假設要為一個特定領域構建知識圖譜,以下關于數據來源的選擇,哪一項是最關鍵的?()A.只選擇權威的學術文獻和研究報告,確保知識的準確性B.廣泛收集互聯網上的各種信息,包括社交媒體和博客等C.結合行業專家的經驗和知識,以及相關的數據庫和文檔D.隨機選擇一些數據來源,不進行篩選和評估13、人工智能中的計算機視覺技術能夠讓計算機理解和分析圖像和視頻內容。假設要開發一個能夠實時監測交通流量和識別車輛類型的系統,需要在不同的天氣和光照條件下準確地檢測和分類車輛。以下哪種計算機視覺技術或方法在這種復雜場景下具有更好的魯棒性和準確性?()A.傳統的圖像處理方法B.基于特征提取的方法C.深度學習中的目標檢測算法D.光流法14、在人工智能的發展中,數據的質量和數量對模型的訓練和性能有著重要的影響。以下關于數據在人工智能中的作用的描述,不正確的是()A.高質量、大規模的數據能夠幫助模型學習到更準確和通用的模式B.數據清洗和預處理是提高數據質量的重要步驟,可以減少噪聲和錯誤C.即使數據量較少,通過巧妙的算法設計和模型架構,也能訓練出性能優異的人工智能模型D.數據的標注工作對于監督學習非常重要,準確的標注能夠提高模型的學習效果15、人工智能中的語音識別技術能夠將人類的語音轉換為文字。以下關于語音識別的敘述,不準確的是()A.語音識別系統通常包括聲學模型、語言模型和解碼器等部分B.語音識別的準確率受到語音質量、口音和背景噪聲等因素的影響C.語音識別技術已經非常完美,能夠準確識別各種口音和語速的語音D.深度學習的應用顯著提高了語音識別的性能和準確率16、在人工智能的發展中,倫理和社會問題日益受到關注。例如,自動駕駛汽車在面臨不可避免的事故時,需要做出決策以最小化傷亡。這種情況下,以下哪種觀點是需要重點考慮的?()A.優先保護乘客的生命安全B.隨機選擇保護對象C.按照預設的規則進行決策,不考慮具體情況D.綜合考慮多種因素,如法律、道德和社會影響17、在人工智能的模型評估中,需要使用多種指標來衡量模型的性能。假設評估一個分類模型,以下關于模型評估指標的描述,哪一項是不正確的?()A.準確率是正確分類的樣本數占總樣本數的比例,是常用的評估指標之一B.召回率衡量了被正確識別的正例在實際正例中的比例C.F1值綜合考慮了準確率和召回率,是一個更全面的評估指標D.只要模型的準確率高,就說明模型在實際應用中表現良好,無需考慮其他指標18、在人工智能的可解釋性研究中,對于一個復雜的深度學習模型,假設需要向用戶解釋模型的決策依據和輸出結果。以下哪種方法能夠提供更直觀和易于理解的解釋?()A.特征重要性分析,確定輸入特征對輸出的影響B.可視化中間層的激活值C.生成文本解釋,描述模型的推理過程D.以上都是19、人工智能中的深度學習模型通常需要大量的計算資源進行訓練。假設一個研究團隊資源有限。以下關于在有限資源下訓練模型的策略描述,哪一項是不正確的?()A.可以使用數據增強技術,通過對原始數據進行隨機變換來增加數據量B.選擇輕量級的模型架構,減少參數數量和計算量C.降低模型的訓練精度,如使用低精度數值表示,以加快訓練速度D.為了保證模型性能,無論資源如何有限,都不能對模型進行任何簡化和壓縮20、人工智能在教育領域有潛在的應用價值。假設要開發一個個性化學習系統,能夠根據學生的學習情況提供定制的學習計劃。以下關于收集學生學習數據的方法,哪一項是需要謹慎處理的?()A.跟蹤學生在在線學習平臺上的學習時間、答題情況等B.收集學生的個人興趣愛好和家庭背景等信息C.分析學生的作業和考試成績,了解其知識掌握程度D.通過問卷調查了解學生的學習風格和偏好21、在人工智能的圖像識別任務中,需要對大量的圖像進行分類,例如區分貓、狗、鳥等不同的動物類別。假設數據集包含各種不同角度、光照條件和背景下的圖像,為了提高圖像識別的準確率和泛化能力,以下哪種技術或策略是重要的?()A.增加數據增強操作,如翻轉、旋轉、縮放圖像B.使用更復雜的神經網絡架構,增加層數和參數C.只使用高質量、清晰的圖像進行訓練D.減少訓練數據的數量,以加快訓練速度22、在人工智能的研究中,可解釋性是一個重要的問題。假設我們訓練了一個復雜的深度學習模型用于醫療診斷,但是其決策過程難以理解。那么,以下關于模型可解釋性的說法,哪一項是不正確的?()A.可解釋性對于建立用戶信任至關重要B.一些可視化技術可以幫助理解模型的內部工作機制C.為了追求高精度,模型的可解釋性可以被犧牲D.可解釋性有助于發現模型可能存在的偏差和錯誤23、強化學習是人工智能中的一種學習方法,常用于訓練智能體在環境中做出最優決策。假設一個機器人需要通過強化學習來學習如何在復雜的環境中行走而不摔倒。以下關于強化學習的描述,哪一項是不正確的?()A.智能體通過與環境進行交互,根據獲得的獎勵來調整自己的行為策略B.強化學習需要大量的試驗和錯誤來找到最優策略,計算成本較高C.可以用于解決連續動作空間和高維度狀態空間的問題D.強化學習不需要對環境有任何先驗知識,完全依靠隨機探索來學習24、人工智能在農業領域的應用可以幫助提高農作物產量和質量。假設要開發一個系統來監測農田中的病蟲害情況,需要能夠準確識別病蟲害的類型和嚴重程度。以下哪種圖像分析技術和機器學習算法的組合在這個任務中最為有效?()A.圖像分割技術結合決策樹算法B.目標檢測技術結合支持向量機算法C.特征提取技術結合樸素貝葉斯算法D.深度學習中的卷積神經網絡結合隨機森林算法25、人工智能中的情感計算旨在讓計算機理解和處理人類的情感。假設我們要開發一個能夠根據用戶的語音和文本判斷其情感狀態的系統,以下關于情感計算的描述,哪一項是不正確的?()A.可以通過分析語音的語調、語速等特征來判斷情感B.文本情感分析通常依賴于情感詞典和機器學習算法C.情感計算的準確性完全取決于數據的質量和規模D.多模態情感分析結合了語音、文本、面部表情等多種信息源26、在人工智能的優化算法中,隨機梯度下降(SGD)是常用的方法之一。假設在訓練一個深度學習模型時,發現模型收斂速度較慢。以下哪種改進的SGD變種或優化策略能夠加快模型的收斂速度,同時避免陷入局部最優解?()A.AdagradB.AdadeltaC.RMSPropD.以上策略結合使用27、人工智能中的生成對抗網絡(GAN)是一種創新的模型架構。以下關于GAN的說法,不正確的是()A.GAN由生成器和判別器組成,通過兩者之間的對抗訓練來生成逼真的數據B.GAN在圖像生成、文本生成和數據增強等領域取得了顯著的成果C.GAN的訓練過程穩定,容易收斂到最優解D.GAN的應用存在一些潛在的問題,如模式崩潰和訓練不穩定等28、圖像識別是人工智能的常見應用之一。假設要開發一個能夠準確識別各種動物的圖像識別系統,以下關于圖像識別技術的描述,正確的是:()A.僅僅依靠像素級的特征提取就能實現高精度的圖像識別,無需考慮對象的形狀和結構B.深度學習模型在圖像識別中總是能夠自動學習到最有效的特征,無需人工干預特征設計C.對于復雜的圖像場景,傳統的圖像識別方法比基于深度學習的方法更具優勢D.圖像識別系統的性能不受圖像質量、光照條件和拍攝角度等因素的影響29、圖像識別是人工智能的一個重要應用領域。假設一個安防系統需要通過攝像頭實時識別出特定的人物或物體。以下關于圖像識別技術的描述,哪一項是錯誤的?()A.深度學習算法在圖像識別中表現出色,能夠自動學習圖像的特征B.圖像識別系統需要大量的標注數據進行訓練,以提高識別準確率C.圖像的光照、角度和背景變化等因素會對識別結果產生較大影響D.一旦圖像識別模型訓練完成,就無需再進行更新和改進,可以一直準確識別各種新的圖像30、知識圖譜是人工智能中用于表示知識和關系的一種技術。假設一個智能問答系統基于知識圖譜來回答用戶的問題。以下關于知識圖譜的描述,哪一項是錯誤的?()A.知識圖譜將實體、關系和屬性以圖的形式組織起來,便于知識的表示和查詢B.可以通過從大量文本中自動抽取信息來構建知識圖譜C.知識圖譜中的知識是固定不變的,一旦構建完成就無需更新D.結合自然語言處理技術,能夠實現基于知識圖譜的智能問答和推理二、操作題(本大題共5個小題,共25分)1、(本

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論