共美聯盟2024年高三4月質量調研(二模)數學試題_第1頁
共美聯盟2024年高三4月質量調研(二模)數學試題_第2頁
共美聯盟2024年高三4月質量調研(二模)數學試題_第3頁
共美聯盟2024年高三4月質量調研(二模)數學試題_第4頁
共美聯盟2024年高三4月質量調研(二模)數學試題_第5頁
已閱讀5頁,還剩15頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

共美聯盟2023年高三4月質量調研(二模)數學試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知數列是以1為首項,2為公差的等差數列,是以1為首項,2為公比的等比數列,設,,則當時,的最大值是()A.8 B.9 C.10 D.112.設a,b∈(0,1)∪(1,+∞),則"a=b"是"logA.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件3.若為虛數單位,則復數的共軛復數在復平面內對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.已知函數是定義在上的奇函數,函數滿足,且時,,則()A.2 B. C.1 D.5.若,則“”是“的展開式中項的系數為90”的()A.必要不充分條件 B.充分不必要條件 C.充要條件 D.既不充分也不必要條件6.已知拋物線上一點到焦點的距離為,分別為拋物線與圓上的動點,則的最小值為()A. B. C. D.7.在四邊形中,,,,,,點在線段的延長線上,且,點在邊所在直線上,則的最大值為()A. B. C. D.8.函數的圖象大致是()A. B.C. D.9.已知復數(為虛數單位,),則在復平面內對應的點所在的象限為()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.關于函數在區間的單調性,下列敘述正確的是()A.單調遞增 B.單調遞減 C.先遞減后遞增 D.先遞增后遞減11.已知集合,則為()A.[0,2) B.(2,3] C.[2,3] D.(0,2]12.各項都是正數的等比數列的公比,且成等差數列,則的值為()A. B.C. D.或二、填空題:本題共4小題,每小題5分,共20分。13.某幾何體的三視圖如圖所示(單位:),則該幾何體的體積是_____;最長棱的長度是_____.14.在等比數列中,,則________.15.如圖,兩個同心圓的半徑分別為和,為大圓的一條直徑,過點作小圓的切線交大圓于另一點,切點為,點為劣弧上的任一點(不包括兩點),則的最大值是__________.16.從2、3、5、7、11、13這六個質數中任取兩個數,這兩個數的和仍是質數的概率是________(結果用最簡分數表示)三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的右頂點為,為上頂點,點為橢圓上一動點.(1)若,求直線與軸的交點坐標;(2)設為橢圓的右焦點,過點與軸垂直的直線為,的中點為,過點作直線的垂線,垂足為,求證:直線與直線的交點在橢圓上.18.(12分)等差數列的前項和為,已知,.(Ⅰ)求數列的通項公式及前項和為;(Ⅱ)設為數列的前項的和,求證:.19.(12分)已知拋物線的焦點為,點在拋物線上,,直線過點,且與拋物線交于,兩點.(1)求拋物線的方程及點的坐標;(2)求的最大值.20.(12分)已知函數,.(1)當時,判斷是否是函數的極值點,并說明理由;(2)當時,不等式恒成立,求整數的最小值.21.(12分)已知函數.(1)當時,求不等式的解集;(2)若的解集包含,求的取值范圍.22.(10分)[選修4-4:極坐標與參數方程]在直角坐標系中,曲線的參數方程為(是參數),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求曲線的極坐標方程和曲線的直角坐標方程;(2)若射線與曲線交于,兩點,與曲線交于,兩點,求取最大值時的值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】

根據題意計算,,,解不等式得到答案.【詳解】∵是以1為首項,2為公差的等差數列,∴.∵是以1為首項,2為公比的等比數列,∴.∴.∵,∴,解得.則當時,的最大值是9.故選:.【點睛】本題考查了等差數列,等比數列,f分組求和,意在考查學生對于數列公式方法的靈活運用.2.A【解析】

根據題意得到充分性,驗證a=2,b=1【詳解】a,b∈0,1∪1,+∞,當"a=b當logab=log故選:A.【點睛】本題考查了充分不必要條件,意在考查學生的計算能力和推斷能力.3.B【解析】

由共軛復數的定義得到,通過三角函數值的正負,以及復數的幾何意義即得解【詳解】由題意得,因為,,所以在復平面內對應的點位于第二象限.故選:B【點睛】本題考查了共軛復數的概念及復數的幾何意義,考查了學生概念理解,數形結合,數學運算的能力,屬于基礎題.4.D【解析】

說明函數是周期函數,由周期性把自變量的值變小,再結合奇偶性計算函數值.【詳解】由知函數的周期為4,又是奇函數,,又,∴,∴.故選:D.【點睛】本題考查函數的奇偶性與周期性,掌握周期性與奇偶性的概念是解題基礎.5.B【解析】

求得的二項展開式的通項為,令時,可得項的系數為90,即,求得,即可得出結果.【詳解】若則二項展開式的通項為,令,即,則項的系數為,充分性成立;當的展開式中項的系數為90,則有,從而,必要性不成立.故選:B.【點睛】本題考查二項式定理、充分條件、必要條件及充要條件的判斷知識,考查考生的分析問題的能力和計算能力,難度較易.6.D【解析】

利用拋物線的定義,求得p的值,由利用兩點間距離公式求得,根據二次函數的性質,求得,由取得最小值為,求得結果.【詳解】由拋物線焦點在軸上,準線方程,則點到焦點的距離為,則,所以拋物線方程:,設,圓,圓心為,半徑為1,則,當時,取得最小值,最小值為,故選D.【點睛】該題考查的是有關距離的最小值問題,涉及到的知識點有拋物線的定義,點到圓上的點的距離的最小值為其到圓心的距離減半徑,二次函數的最小值,屬于中檔題目.7.A【解析】

依題意,如圖以為坐標原點建立平面直角坐標系,表示出點的坐標,根據求出的坐標,求出邊所在直線的方程,設,利用坐標表示,根據二次函數的性質求出最大值.【詳解】解:依題意,如圖以為坐標原點建立平面直角坐標系,由,,,,,,,因為點在線段的延長線上,設,解得,所在直線的方程為因為點在邊所在直線上,故設當時故選:【點睛】本題考查向量的數量積,關鍵是建立平面直角坐標系,屬于中檔題.8.B【解析】

根據函數表達式,把分母設為新函數,首先計算函數定義域,然后求導,根據導函數的正負判斷函數單調性,對應函數圖像得到答案.【詳解】設,,則的定義域為.,當,,單增,當,,單減,則.則在上單增,上單減,.選B.【點睛】本題考查了函數圖像的判斷,用到了換元的思想,簡化了運算,同學們還可以用特殊值法等方法進行判斷.9.B【解析】

分別比較復數的實部、虛部與0的大小關系,可判斷出在復平面內對應的點所在的象限.【詳解】因為時,所以,,所以復數在復平面內對應的點位于第二象限.故選:B.【點睛】本題考查復數的幾何意義,考查學生的計算求解能力,屬于基礎題.10.C【解析】

先用誘導公式得,再根據函數圖像平移的方法求解即可.【詳解】函數的圖象可由向左平移個單位得到,如圖所示,在上先遞減后遞增.故選:C【點睛】本題考查三角函數的平移與單調性的求解.屬于基礎題.11.B【解析】

先求出,得到,再結合集合交集的運算,即可求解.【詳解】由題意,集合,所以,則,所以.故選:B.【點睛】本題主要考查了集合的混合運算,其中解答中熟記集合的交集、補集的定義及運算是解答的關鍵,著重考查了計算能力,屬于基礎題.12.C【解析】分析:解決該題的關鍵是求得等比數列的公比,利用題中所給的條件,建立項之間的關系,從而得到公比所滿足的等量關系式,解方程即可得結果.詳解:根據題意有,即,因為數列各項都是正數,所以,而,故選C.點睛:該題應用題的條件可以求得等比數列的公比,而待求量就是,代入即可得結果.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

由三視圖還原原幾何體,該幾何體為四棱錐,底面為直角梯形,,,側棱底面,由棱錐體積公式求棱錐體積,由勾股定理求最長棱的長度.【詳解】由三視圖還原原幾何體如下圖所示:該幾何體為四棱錐,底面為直角梯形,,,側棱底面,則該幾何體的體積為,,,因此,該棱錐的最長棱的長度為.故答案為:;.【點睛】本題考查由三視圖求體積、棱長,關鍵是由三視圖還原原幾何體,是中檔題.14.1【解析】

設等比數列的公比為,再根據題意用基本量法求解公比,進而利用等比數列項之間的關系得即可.【詳解】設等比數列的公比為.由,得,解得.又由,得.則.故答案為:1【點睛】本題主要考查了等比數列基本量的求解方法,屬于基礎題.15.【解析】

以為坐標原點,所在的直線為軸,的垂直平分線為軸,建立平面直角坐標系,從而可得、,,,然后利用向量數量積的坐標運算可得,再根據輔助角公式以及三角函數的性質即可求解.【詳解】以為坐標原點,所在的直線為軸,的垂直平分線為軸,建立平面直角坐標系,則、,由,且,所以,所以,即又平分,所以,則,設,則,,所以,所以,,所以的最大值是.故答案為:【點睛】本題考查了向量數量積的坐標運算、利用向量解決幾何問題,同時考查了輔助角公式以及三角函數的性質,屬于中檔題.16.【解析】

依據古典概型的計算公式,分別求“任取兩個數”和“任取兩個數,和是質數”的事件數,計算即可?!驹斀狻俊叭稳蓚€數”的事件數為,“任取兩個數,和是質數”的事件有(2,3),(2,5),(2,11)共3個,所以任取兩個數,這兩個數的和仍是質數的概率是?!军c睛】本題主要考查古典概型的概率求法。三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)(2)見解析【解析】

(1)直接求出直線方程,與橢圓方程聯立求出點坐標,從而可得直線方程,得其與軸交點坐標;(2)設,則,求出直線和的方程,從而求得兩直線的交點坐標,證明此交點在橢圓上,即此點坐標適合橢圓方程.代入驗證即可.注意分和說明.【詳解】解:本題考查直線與橢圓的位置關系的綜合,(1)由題知,,則.因為,所以,則直線的方程為,聯立,可得故.則,直線的方程為.令,得,故直線與軸的交點坐標為.(2)證明:因為,,所以.設點,則.設當時,設,則,此時直線與軸垂直,其直線方程為,直線的方程為,即.在方程中,令,得,得交點為,顯然在橢圓上.同理當時,交點也在橢圓上.當時,可設直線的方程為,即.直線的方程為,聯立方程,消去得,化簡并解得.將代入中,化簡得.所以兩直線的交點為.因為,又因為,所以,則,所以點在橢圓上.綜上所述,直線與直線的交點在橢圓上.【點睛】本題考查直線與橢圓相交問題,解題方法是解析幾何的基本方程,求出直線方程,解方程組求出交點坐標,代入曲線方程驗證點在曲線.本題考查了學生的運算求解能力.18.(Ⅰ),(Ⅱ)見解析【解析】

(Ⅰ)根據等差數列公式直接計算得到答案.(Ⅱ),根據裂項求和法計算得到得到證明.【詳解】(Ⅰ)等差數列的公差為,由,得,,即,,解得,.∴,.(Ⅱ),∴,∴,即.【點睛】本題考查了等差數列的基本量的計算,裂項求和,意在考查學生對于數列公式方法的靈活運用.19.(1),;(2)1.【解析】

(1)根據拋物線上的點到焦點和準線的距離相等,可得p值,即可求拋物線C的方程從而可得解;(2)設直線l的方程為:x+my﹣1=0,代入y2=4x,得,y2+4my﹣4=0,設A(x1,y1),B(x2,y2),則y1+y2=﹣4m,y1y2=﹣4,x1+x2=2+4m2,x1x2=1,(),(x2﹣2,),由此能求出的最大值.【詳解】(1)∵點F是拋物線y2=2px(p>0)的焦點,P(2,y0)是拋物線上一點,|PF|=3,∴23,解得:p=2,∴拋物線C的方程為y2=4x,∵點P(2,n)(n>0)在拋物線C上,∴n2=4×2=8,由n>0,得n=2,∴P(2,2).(2)∵F(1,0),∴設直線l的方程為:x+my﹣1=0,代入y2=4x,整理得,y2+4my﹣4=0設A(x1,y1),B(x2,y2),則y1,y2是y2+4my﹣4=0的兩個不同實根,∴y1+y2=﹣4m,y1y2=﹣4,x1+x2=(1﹣my1)+(1﹣my2)=2﹣m(y1+y2)=2+4m2,x1x2=(1﹣my1)(1﹣my2)=1﹣m(y1+y2)+m2y1y2=1+4m2﹣4m2=1,(),(x2﹣2,),(x1﹣2)(x2﹣2)+()()=x1x2﹣2(x1+x2)+4=1﹣4﹣8m2+4﹣4+8m+8=﹣8m2+8m+5=﹣8(m)2+1.∴當m時,取最大值1.【點睛】本題考查拋物線方程的求法,考查向量的數量積的最大值的求法,考查拋物線、直線方程、韋達定理等基礎知識,考查運算求解能力,考查函數與方程思想,是中檔題.20.(1)是函數的極大值點,理由詳見解析;(2)1.【解析】

(1)將直接代入,對求導得,由于函數單調性不好判斷,故而構造函數,繼續求導,判斷導函數在左右兩邊的正負情況,最后得出,是函數的極大值點;(2)利用題目已有條件得,再證明時,不等式恒成立,即證,從而可知整數的最小值為1.【詳解】解:(1)當時,.令,則當時,.即在內為減函數,且∴當時,;當時,.∴在內是增函數,在內是減函數.綜上,是函數的極大值點.(2)由題意,得,即.現證明當時,不等式成立,即.即證令則∴當時,;當時,.∴在內單調遞增,在內單調遞減,的最大值為.∴當時,.即當時,不等式成立.綜上,整數的最小值為.【點睛】本題考查學生利用導數處理函數的極值,最值,判斷函數的單調性,由此來求

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論