




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
專題二
本章重難點一、二次函數的圖象和性質【例1】(2022·新疆)已知拋物線y=(x-2)2+1,下列結論錯誤的是()A.拋物線開口向上B.拋物線的對稱軸為直線x=2C.拋物線的頂點坐標為(2,1)D.當x<2時,y隨x的增大而增大D【例2】(2022·綿陽)如圖Z22-2-1,二次函數y=ax2+bx+c的圖象關于直線x=1對稱,與x軸交于A(x1,0),B(x2,0)兩點.若-2<x1<-1,則下列四個結論:①3<x2<4;②3a+2b>0;③b2>a+c+4ac;④a>c>b,正確結論的個數為()A.1個
B.2個C.3個
D.4個B【對點訓練】1.(2022·阜新)下列關于二次函數y=3(x+1)(2-x)的圖象和性質的敘述中,正確的是()A.點(0,2)在函數圖象上B.開口方向向上C.對稱軸是直線x=1D.與直線y=3x有兩個交點D2.(2022·內蒙古)如圖Z22-2-2,拋物線y=ax2+bx+c(a≠0)與x軸的一個交點坐標為(-1,0),拋物線的對稱軸為直線x=1,下列結論:①abc<0;②3a+c=0;③當y>0時,x的取值范圍是-1≤x<3;④點(-2,y1),(2,y2)都在拋物線上,則有y1<0<y2.其中結論正確的個數是()A.1個
B.2個C.3個
D.4個C二、二次函數與一元二次方程【例3】(2021·成都)在平面直角坐標系xOy中,若拋物線y=x2+2x+k與x軸只有一個交點,則k=______.1【對點訓練】3.(2022·大慶)已知函數y=mx2+3mx+m-1的圖象與坐標軸恰有兩個公共點,則實數m的值為____________.
三、求二次函數的解析式【例4】(2022·牡丹江改編)如圖Z22-2-3,已知拋物線y=-x2+bx+c與x軸交于A(-1,0),B(3,0)兩點,與y軸交于點C,頂點為D.(1)求該拋物線的解析式;(2)連接BC,CD,BD,P為BD的中點,連接CP,求線段CP的長.
【對點訓練】4.(2022·東營改編)如圖Z22-2-4,拋物線y=ax2+bx-3(a≠0)與x軸交于點A(-1,0),點B(3,0),與y軸交于點C.(1)求拋物線的解析式;(2)在對稱軸上找一點Q,使△ACQ的周長最小,求點Q的坐標.
(2)如答圖Z22-2-1,連接CB交對稱軸于點Q.∵y=x2-2x-3=(x-1)2-4,∴拋物線的對稱軸為直線x=1.令x=0,y=-3.∴C(0,-3).∵A,B關于對稱軸x=1對稱,∴AQ=BQ.∴AC+CQ+AQ=AC+CQ+BQ≥AC+BC.當C,B,Q三點共線時,△ACQ的周長最小.∵C(0,-3),B(3,0),
【對點訓練】5.(2021·泰州)已知二次函數y=-x2+(a-1)x+a(a為常數)圖象的頂點在y軸右側.(1)寫出該二次函數圖象的頂點橫坐標(用含a的代數式表示);(2)該二次函數表達式可變形為y=-(x-p)(x-a)的形式,求p的值;(3)若點A(m,n)在該二次函數圖象上,且n>0,過點(m+3,0)作y軸的平行線,與二次函數圖象的交點在x軸下方,求a的取值范圍.
(2)∵y=-x2+(a-1)x+a=-[x2-(a-1)x-a]=-(x+1)(x-a),∴p=-1.
五、實際問題與二次函數【例6】(2022·威海)如圖Z22-2-6,某農場要建一個矩形養雞場,雞場的一邊靠墻,另外三邊用木柵欄圍成.已知墻長25m,木柵欄長47m,在與墻垂直的一邊留出1m寬的出入口(另選材料建出入門).求雞場面積的最大值.解:設矩形雞場與墻垂直的一邊長為xm,則與墻平行的一邊長為(47-2x+1)m.由題意,得y=x(47-2x+1)=-2(x-12)2+288.∵-2<0,∴當x=12時,y有最大值為288.當x=12時,47-2x+1=24<25,符合題意.答:雞場的最大面積為288m2.【對點訓練】6.(2022·無錫)如圖Z22-2-7,某農場計劃建造一個矩形養殖場,為充分利用現有資源,該矩形養殖場一面靠墻(墻的長度為10m),另外三面用柵欄圍成,中間再用柵欄把它分成兩個面積為1∶2的矩形,已知柵欄的總長度為24m,設較小矩形的寬為xm.(1)若矩形養殖場的總面積為36m2,求此時x的值;(2)當x為多少時,矩形養殖場的總面積最大?最大值為多少?
【例7】(2022·賀州)2022年在中國舉辦的冬奧會和殘奧會令世界矚目,冬奧會和殘奧會的吉祥物“冰墩墩”和“雪容融”家喻戶曉,成為熱銷產品.某商家以每套34元的價格購進一批“冰墩墩”和“雪容融”套件.若該產品每套的售價是48元時,每天可售出200套;若每套售價提高2元,則每天少賣4套.(1)設“冰墩墩”和“雪容融”套件每套售價定為x元時,求該商品銷售量y與x之間的函數關系式;(2)當每套售價定為多少元時,每天銷售套件所獲利潤W最大,最大利潤是多少元?
(2)根據題意,得
W=(x-34)(-2x+296)
=-2(x-91)2+6498.∵a=-2<0,∴當x=91時,W有最大值,W最大值=6498.答:每套售價定為91元時,每天銷售套件所獲利潤最大,最大利潤是6498元.7.(2022·寧波)為了落實勞動教育,某學校邀請農科院專家指導學生進行小番茄的種植,經過試驗,其平均單株產量ykg與每平方米種植的株數x(2≤x≤8,且x為整數)構成一種函數關系.每平方米種植2株時,平均單株產量為4kg;以同樣的栽培條件,每平方米種植的株數每增加1株,單株產量減少0.5kg.(1)求y關于x的函數表達式.(2)每平方米種植多少株時,能獲得最大的產量?最大產量為多少千克?解:(1)∵每平方米種植的株數每增加1株,單株產量減少0.5kg,∴y=4-0.5(x-2)=-0.5x+5.∴y關于x的函數表達式為y=-0.5x+5(2≤x≤8,且x為整數)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 數據可視化項目造價咨詢合同
- 《講句子結構》課件
- 海外投資協議補充協議
- 鐵路工程安全技術石家莊鐵路60課件
- 鐵路集裝箱運價計算單元集裝箱運輸雜費計算課件
- 中醫社區護理課件
- 大學生職業規劃大賽《光電信息科學與工程專業》生涯發展展示
- 紙箱廠承包合同范本大全
- 設備采購合同附加協議范本
- 股權轉讓合同模板及風險防范
- 浙江省杭州市蕭山區第二學期六年級語文期中試題(含答案)
- 大學生心理健康-廈門大學中國大學mooc課后章節答案期末考試題庫2023年
- 《中餐烹飪美學》課后答案
- 2020農村人居環境綜合整治項目可行性研究報告
- 《工業控制網絡及組態技術》教案
- 07FG04 鋼筋混凝土門框墻(含更正說明)
- 流體力學(清華大學張兆順54講) PPT課件 76-2-4流體力學(中)(第二章 流體運動學)
- 基于超限學習機的無設備定位方法研究
- 110kV輸變電工程施工組織設計
- NY 526-2002水稻苗床調理劑
- GB/T 20124-2006鋼鐵氮含量的測定惰性氣體熔融熱導法(常規方法)
評論
0/150
提交評論