基于超限學習機的無設備定位方法研究_第1頁
基于超限學習機的無設備定位方法研究_第2頁
基于超限學習機的無設備定位方法研究_第3頁
基于超限學習機的無設備定位方法研究_第4頁
基于超限學習機的無設備定位方法研究_第5頁
已閱讀5頁,還剩3頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

基于超限學習機的無設備定位方法研究基于超限學習機的無設備定位方法研究

摘要

無線定位技術因其方便快捷、無需硬件部署、精度高等優點而受到廣泛關注。本文提出一種基于超限學習機的無設備定位方法,其中超限學習機被用于實現非線性函數映射,通過收集Wi-Fi信號強度和位置數據作為訓練集,并以壓縮感知的方式實現極限降維,來進行定位。為了進一步提升精度,本文引入了局部權重貢獻方法來降低信號強度測量誤差對定位結果的影響。

本文還在室內環境下進行了一系列實驗,比較了所提出的方法與傳統的KNN定位算法和基于支持向量機的定位方法。實驗結果表明,所提出的無設備定位方法具有較高的定位精度和更好的魯棒性。

關鍵詞:超限學習機;無設備定位;Wi-Fi;壓縮感知;局部權重貢獻。

Abstract

Wirelesspositioningtechnologyhasattractedwidespreadattentionduetoitsconvenience,nohardwaredeployment,andhighaccuracy.Inthispaper,adevice-freepositioningmethodbasedonextremelearningmachine(ELM)isproposed,inwhichtheELMisusedtoachievenon-linearfunctionmapping.Wi-Fisignalstrengthandlocationdataarecollectedastrainingsets,andextremedimensionreductionisachievedbycompressivesensingtoperformpositioning.Inordertofurtherimprovetheaccuracy,thispaperintroducesthelocalweightcontributionmethodtoreducetheimpactofmeasurementerrorsonthepositioningresults.

Inaddition,aseriesofexperimentswerecarriedoutinanindoorenvironmenttocomparetheproposedmethodwiththetraditionalKNNpositioningalgorithmandthesupportvectormachine-basedpositioningmethod.Theexperimentalresultsshowthattheproposeddevice-freepositioningmethodhashigherpositioningaccuracyandbetterrobustness.

Keywords:Extremelearningmachine(ELM);device-freepositioning;Wi-Fi;compressivesensing;localweightcontributionDevice-freepositioninghasbecomeanimportantresearchareaduetoitswiderangeofapplicationssuchassecurity,healthcare,andhomeautomation.Inthisstudy,anoveldevice-freepositioningalgorithmbasedonextremelearningmachine(ELM)andcompressivesensingwasproposed.Theproposedalgorithmutilizesthereceivedsignalstrength(RSS)ofWi-Fisignalstoestimatethepositionofatargetuserwithouttheneedforanyadditionaldevicesorsensors.

TheELMalgorithmwasutilizedtotrainalocalweightcontributionmatrix,whichisusedtodeterminethecontributionofeachsignalstrengthmeasurementtothepositioningresults.CompressivesensingwasusedtoreducethedimensionalityoftheRSSmatrix,thusreducingthecomputationalcomplexityandimprovingtheaccuracyofthealgorithm.

Aseriesofexperimentswereconductedinanindoorenvironmenttoevaluatetheproposeddevice-freepositioningmethod.TheexperimentalresultsshowedthattheproposedmethodoutperformedthetraditionalKNNpositioningalgorithmandthesupportvectormachine-basedpositioningmethodintermsofaccuracyandrobustness.

Inconclusion,thisstudyproposesanoveldevice-freepositioningalgorithmbasedonELMandcompressivesensing,whichcanaccuratelyestimatethepositionofatargetuserusingonlyWi-Fisignals.Themethodhaspotentialforawiderangeofapplications,includinghomeautomation,healthcare,andsecurityTherearesomelimitationsandfuturedirectionsfortheproposeddevice-freepositioningalgorithmbasedonELMandcompressivesensing.First,thealgorithmassumesthattheenvironmentisstaticduringthepositioningprocess.However,inreal-worldscenarios,theenvironmentmaychangedynamicallyovertime,whichcouldaffecttheaccuracyofthealgorithm.Therefore,futureresearchcanfocusondevelopingdynamicalgorithmsthatcanadapttochangingenvironments.

Second,thealgorithmisbasedonWi-Fisignals,whichmaynotbeavailableinallenvironments.Insuchcases,alternativesignals,suchasBluetoothorRFID,couldbeused.Futureresearchcanexplorehowtheproposedalgorithmcouldbeadaptedtoworkwithothertypesofsignals.

Third,theproposedalgorithmrequiresatrainingphasetobuildthedictionarymatrix.Thisprocesscanbetime-consumingandmaynotbefeasibleinsomereal-worldscenarios.Therefore,futureresearchcanfocusondevelopingalgorithmsthatdonotrequireatrainingphase.

Fourth,theproposedalgorithmcurrentlyonlyworksforsingle-userscenarios.Inmulti-userenvironments,interferencebetweenuserscouldaffecttheaccuracyofthealgorithm.Therefore,futureresearchcanexplorehowthealgorithmcouldbeadaptedtoworkinmulti-userscenarios.

Finally,whiletheproposedalgorithmoutperformedtraditionalpositioningalgorithmsintermsofaccuracyandrobustness,thereisstillroomforimprovement.Futureresearchcanfocusondevelopingmoreadvancedalgorithmsthatfurtherimprovetheaccuracyandefficiencyofdevice-freepositioningsystems.

Overall,theproposeddevice-freepositioningalgorithmbasedonELMandcompressivesensinghasthepotentialtorevolutionizeindoorpositioningsystems.Withfurtherdevelopmentandresearch,itcouldenableawiderangeofapplicationsthatbenefitsocietyOnepotentialapplicationofdevice-freepositioningsystemsisinthefieldofhealthcare.Hospitalstaffneedtokeeptrackofpatientsandmedicalequipmentwithinthehospitalenvironment,andaccurateindoorpositioningcanhelptoincreaseefficiencyandreduceerrors.Forexample,adevice-freepositioningsystemcouldbeusedtotrackthemovementofahospitalbedandalertstaffwhenitreachesacertainlocation,suchastheoperatingroom.Itcouldalsobeusedtotrackthelocationofmedicalstaff,ensuringthattheyareinthecorrectareatoprovidetherequiredmedicalcare.

Anotherpotentialapplicationisinthefieldofsecurity.Traditionalsecuritysystemssuchasvideocamerasmaybeineffectiveincertainsituations,suchaswhentheintruderiswearingamaskorifthecamera'sviewisblocked.Adevice-freepositioningsystemcandetectthepresenceofahumanbeingeveniftheyarenotcarryinganyelectronicdevices,enablingsecuritypersonneltoidentifytheintruderandtakeappropriateaction.

Moreover,device-freepositioningsystemscanalsobeusedinenvironmentalmonitoring.Theycandetectandtrackthemovementofwildlifeinnaturalhabitatswithoutdisturbingthem,providingvaluableinformationtoresearchersandconservationists.Theycanalsobeusedtomonitorthemovementofpeopleindisasterzones,enablingfirstresponderstolocatesurvivorsandprovideassistancemoreefficiently.

Finally,device-freepositioningsystemscanbeusedinretailenvironments.Theycanprovidevaluableinsightsintocustomerbehavior,suchashowtheynavigatethestoreandwhichitemsaremostpopular.Thisinformationcanbeusedtoimprovestorelayoutandproductplacement,leadingtoincreasedsalesandcustomersatisfaction.

Inconclusion,device-freepositioningsystemshaveenormouspotentialtoenhance

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論