2024年新能源貨車在城市和區域運輸場景中的技術與經濟可行性分析報告:以中國廣東省為例1736133967_第1頁
2024年新能源貨車在城市和區域運輸場景中的技術與經濟可行性分析報告:以中國廣東省為例1736133967_第2頁
2024年新能源貨車在城市和區域運輸場景中的技術與經濟可行性分析報告:以中國廣東省為例1736133967_第3頁
2024年新能源貨車在城市和區域運輸場景中的技術與經濟可行性分析報告:以中國廣東省為例1736133967_第4頁
2024年新能源貨車在城市和區域運輸場景中的技術與經濟可行性分析報告:以中國廣東省為例1736133967_第5頁
已閱讀5頁,還剩90頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

TECHNO-ECONOMICFEASIBILITYANALYSISOFZERO-EMISSIONTRUCKSINURBANANDREGIONALDELIVERYUSECASES:ACASESTUDYOFGUANGDONGPROVINCE,CHINA陳軻薛露露新能源貨車在城市和區域運輸場景中的技術與經濟可行性分析新能源貨車在城市和區域運輸場景中的技術與經濟可行性分析以中國廣東省為 XVIIExecutive TCO 2022 MY2022—MY2030 圖 運輸企業新能源貨車購置決策變量與影響決策變量的四項措施之間的關 圖 圖 本文針對新能源貨車關鍵零部件質量與成本的假設及數據來 圖 2022年4.5噸輕型普通貨車的TCO:深圳市和佛山市城市運輸場 圖 2022年31噸氫燃料電池自卸汽車的TCO:深圳市、佛山市和北京市大興區城市運輸場 圖 2022年42噸半掛牽引車的TCO:深圳市與中國其他城市港口內運輸場 圖 圖 MY2025和MY2030純電動貨車的電池容 圖 MY2025和MY2030純電動貨車相較燃油貨車的載質量損 圖 MY2025和MY2030氫燃料電池貨車的車載儲氫系統容 圖 MY2025和MY2030氫燃料電池貨車與燃油貨車載質量損 圖 MY2022—MY2030不同運輸場景新能源貨車的直接制造成 圖 圖 圖 無政策激勵時,不同運輸場景新能源貨車實現與燃油貨車TCO平價的年 圖 MY2025和MY2030部分場景下純電動貨車與氫燃料電池貨車的TCO構 圖 MY2025新能源貨車與燃油貨車TCO差價與能效比的敏感性分析:以42噸半掛牽引車為 圖 部分運輸場景純電動貨車與燃油貨車實現TCO平價年份與能源價格敏感性分 圖 部分運輸場景氫燃料電池貨車(純氫模式)與燃油貨車實現TCO平價年份與能源價格敏感性分 圖 圖 部分運輸場景中技術進步對MY2022—MY2030新能源貨車TCO下降的貢 圖 圖 表 中國新能源貨車推廣的國家政策及地方(深圳市和佛山市)政 表 表 本文中深圳市、佛山市的典型行駛工況說 表 表 本文覆蓋的典型運輸場景及說 表 本文中不同運輸場景純電動貨車與氫燃料電池貨車的能效 表 本文針對新能源貨車關鍵零部件質量與成本的假設及數據來 表 本文及現有文獻中涉及的新能源貨車TCO成本要 表 本文中燃油貨車、純電動貨車與氫燃料電池貨車的維保成本、保險成本及相關稅費說 表 廣東省燃油貨車、純電動貨車和氫燃料電池貨車的高速收 表 2022年新能源貨車的技術參 表 2022年政策激勵下新能源貨車與燃油貨車的TCO差 表 為彌合新能源貨車與燃油貨車TCO差價,政府與行業可考慮采取的措 附表A-1廣東省部分城市新能源貨車優先路權政 附表B-1本研究開展的調研說

1(ModelYear,以下簡稱MY)2025(Totalcostofownership,以下簡稱TCO)(包括提高車輛年運營里程。MY2030之前與燃油貨車實現TCO源貨車的購置成本在MY2022―MY2030新能源貨車在城市和區域運輸場景中的技術與經濟可行性分析以中國廣東省為 排放都發揮著重要的作用(XueandLiu2022)。與公企業(TUC2022a),所以,未來新能源貨車的推廣應現與同類型燃油貨車的TCO(Toletal.2022)。

為回答這些問題,本研究以中國新能源貨車推廣先進地區――廣東省深圳市與佛山市——為研究對象,定量分析了2022—2030年新能源貨車(本文僅考慮純電動貨車與氫燃料電池貨車2)在城市運輸與區域運輸場景中的技術與經濟可行性。???? 的三個變量展開(Hunteretal2021Toletal2022):??新能源貨車的技術與運營可行性:本文分別分析現狀新能源貨車技術可行性,以及未來如何通過設置新能源貨車關鍵零部件的參數(如電池包額定容量、電機峰值功率等),滿足MY2022—MY2030期間不同運輸場景差異化的運營要求。???新能源貨車購置成本:本文基于關鍵零部件(如電池包、電驅動系統、燃料電池系統和儲氫瓶等)的現狀與未來預測成本,“自下而上”地計算新能源貨車MY202—MY2030的購置成本。其中,新能源貨車關?新能源貨車與燃油貨車的TCO差異:本文所指的TCO包括車輛的購置成本、運營成本、維保成本、關鍵零部件(如電池包)更換成本,以及新能源貨車因載質量損失產生的機會成本。由于數據可得性限制,本文未考慮因補能時長產生的額外成本以及車輛殘值。基于不同場景新能源貨車與燃油貨車實現TCO平價的年份預測,本文識別了近期具備新能源貨車推廣潛力的場景,并分析不同措施——包括政策激勵、技術進步、、商業模式推廣與運營優化——對新能源貨車提前實現與燃油貨車的TCO平價所發揮的作用。此外,本文也通過案例分析,說明本研究的結論對于中國其他區域的適用性,并討論本文分析方法的局限性、結果的不確定性與未來調整方向。MY2027之前實現與燃油貨車的TCOTCO平價時間。??在港口內運輸、集疏港運輸和城市運輸場景中,42噸純電動半掛牽引車在MY2025之前,有望實現與燃油貨車的TCO平價,成為近期最具電動化潛力的場景。此處,本文假設深圳市與佛山市的42噸半掛牽引車主要運輸輕拋貨,不存在新能源貨車載質量損失導致

較高TCO的問題。值得指出的是,在集疏港運輸場景中,若純電動半掛牽引車與柴油貨車在MY2025之前實現TCO平價,運輸企業需要協同純電動半掛牽引車的參數配置、充電基礎設施規劃與車輛運營,包括為純電動半掛牽引車配置更小容量的電池包、部署相應數量的快充基礎設施、協調純電動半掛牽引車的運營與充電時間(如在裝卸貨等待時間、進港等待時間或司機休息時間進行日間補電)、提高純電動半掛牽引車的年運營里程。??在城市運輸場景中,4.5噸純電動輕型普通貨車與18噸純電動載貨汽車有望在MY2027之前實現與燃油貨車的TCO平價。其中,在運輸輕拋貨時,這些純電動貨車在近期(即MY2022—MY2023)就能實現與燃油貨車的TCO平價;但在運輸重貨時,由于受到新能源貨車載質量損失的影響,這些純電動貨車的TCO平價時間將推遲至MY2025—MY2027。??31噸純電動自卸汽車存在突出的載質量損失問題,相較同場景的其他車型,更晚才能實現與燃油貨車的TCO平價(在MY2029左右)。相較之下,在區域運輸場景中,新能源貨車與燃油貨車實現TCO平價的時間比城市運輸、港口內運輸與集疏港運輸場景更晚,在MY2028—MY2030左右。其中,氫燃料電池貨車是具備TCO競爭力的新能源貨車技術——其與燃油貨車實現TCO平價的時間比純電動貨車更早。其原因是燃油貨車在高速工況的能量消耗量比城市工況更低;相反,純電動貨車在高速工況上的能量消耗量比城市工況更高,因此,純電動貨車在區域運輸場景中(以高速工況為主)的能效優勢較小。但值得注意的是,受數據限制,本文未區分氫燃料電池貨車在城市與高速工況的能量消耗量,因此,可能給予氫燃料電池貨車在區域運輸中更大的能效與成本優勢。無政策激勵時,不同運輸場景新能源貨車實現與燃油貨車TCO平價的年份如圖ES-1所示。BET

FCET(混合

FCET(純氫)車 貨物類

(千米

203018噸42噸

說明:基于Pers.Comm.(2023a),本文假設31縮略詞:TCO總擁有成本;BET純電動貨車;FCET=氫燃料電動貨車;ICEV=燃油汽車;混合插電式混合動力模式;純氫純氫模式;UD=城市運;RD=區域運;PO_TRIP=港口內運(“單能源價格對新能源貨車實現與燃油貨車TCO平價上述新能源貨車與燃油貨車實現TCO平價時間的結論,建立在特定的能源價格前提下,包括2022—2030年,柴油價格維持在2022年8.1元/升的年均水平,充電價格(含電價與充電服務費)維持在1.2元/千瓦時的水平,氫氣價格則從2022年的的55元/千克線性下降至2030年的30元/千克。然而,如果未來能源價格發生任何波動,上述新能源貨車的TCO平價年份也將發生變化。例如,如果未來柴油價格降至2019年平均水平(即6.5元/升),而充電價格上升至1.4元/千瓦時,集疏港運輸場景與城市運輸場景中,42噸純電動半掛牽引車與18噸純電動載貨汽車與燃油貨車實現TCO平價的時間將推遲至MY2030左右。類似地,如果柴油價格降至2019年平均水平(即65元升),即便氫氣價格保持不變,區域運輸場景中,氫燃料電池貨車也無法在MY2030之前與燃油貨車如果未來燃油價格下降,有關部門有必要考慮取消現行燃油補貼(Blacketal.2023(OECD2022持新能源貨車的TCO如果2030于30元/千克,有必要在上述措施基礎上考慮提供氫燃料電池貨車加氫補貼。對縮短純電動貨車的TCO的政策組合是可量化的(國家和地方)政策,包括:新能源貨車購置補貼(僅針對氫燃料電池貨車)、稅費減免、能源(充電與加氫)補貼、碳價、新能源貨車優先路權、減免新能源貨車高速收費、提高新能源貨車最大設計總質量,以及降低新能源貨車融資成本(即給予新能源貨車更優惠的貸款利率)車能更快實現與燃油貨車的TCO多數場景中,純電動貨車在MY2025之前就能實現與燃油貨車的TCO平價,比無政策激勵的情況提前0~9年。相較之下,氫燃料電池貨車與燃油貨車的TCO平價時間提前幅度有限:即便提供比純電動貨車更多的補貼,氫燃料電池貨車與燃油貨車實現TCO平價的時間也只能在MY2028之前,比無政策激勵的情況僅提前3~6年。在多數場景中,純電動貨車實現TCO平價的時間比氫燃料電池貨車要早0~6年,成為政策激勵下最有成本競爭力的新能源技術選項。

(充電與加氫高最大設計總質量等政策,都有助于降低新能源貨車的TCO鑒于中國目前的碳價較低,只有碳價政策對縮短新能源貨車與燃油貨車TCO???(充電與加氫)補貼政策,對彌合新能源貨車與燃油貨車的TCO之差有顯著作用,且這些政策適用于多數運輸場景;??新能源貨車優先路權政策對區域運輸、集疏港運輸場景更有效。這是因為本文假設優先路權政策有助于減少新能源貨車的繞行,進而降低其行駛里程。由于區域運輸、集疏港運輸這兩個場景中的車輛行駛里程都較長,因此,優先路權政策更有效;??減免新能源貨車高速收費,對區域運輸和集疏港運輸場景中,降低42噸半掛牽引車TCO有更好的效果。這是因為42噸半掛牽引車在這兩個場景中的高速行駛里程占總里程的比例較大,且因軸數較多,單位里程的高速收費更高;??提高新能源貨車最大設計總質量政策(即給予新能源貨車的車貨總重一定程度的豁免)能夠有效降低新能源貨車在重貨運輸場景下的TCO;?降低新能源貨車融資成本(即給予新能源貨車更優惠的貸款利率)有助于城市運輸場景下縮短新能源貨車實現與燃油貨車TCO平價的時間。補貼對降低其TCO但有關部門應避免購置補貼導致的貨車運力過剩問題。在本文假設的氫燃料電池貨車購置補貼政策下,所有場景中的氫燃料電池貨車都將有望在MY2026—MY2030實現與燃油貨車的TCO平價,最多比無政策激勵的情況提前2年。值得注意的是,若政府提供大量購置補貼刺激新車銷售,可能擾亂貨車運力供給,降低新能源貨車的成本競爭力(PersComm2023a)。因此,政府應避免提供高額購車補貼,而應考慮置換補貼或其他非補貼措施(如新能源貨車優先路權政策)。18200千米

200千米

500千米

-500千米

FCET(純氫31重貨-200千米 重貨-300千米

FCET(純氫C.42200千米

500千米

200千米

-500千米203020302030FCET(純氫42噸半掛牽引車,DDCDDC_TRIPDDC_DVKT縮略詞:BET純電動貨車;FCET=氫燃料電池貨車;純氫純氫模式;UD=城市運;RD=區域運;DDC=集疏港運;DDC_TRIP=集疏港運(“單程運距”法);DDC_DVKT=集疏港運(“日降低新能源貨車CO也同樣重要。盡管在多數運輸場景中,新能源貨車將在MY2030前實現與燃油貨車的TCO平價,但其購置成本仍高于燃油貨車。例如,本研究表明,到MY2030,新能源貨車的購置成本仍比燃油貨車高出53%~322%。為減輕運輸企業(特別是小微運輸企業)新能源貨車初期購買時的一次性費用,并將購置與持有風險分攤給適宜的主體(如新能源貨車租賃企業及平臺、主機廠、金融機構等),可考慮推廣新能源貨車經營性租賃等創新商業模式。未來,如果在更多場景中推廣新能源貨車創新商業模式,政府部門與金融機構等應采取更多支持性的措施,包括但不限于:幫助租賃平臺降低新能源貨車貸款首付比例,提供貸款利率優惠并延長貸款期限,鼓勵綠色金融或混合融資,為其租賃業務提供稅收優惠與靈活折舊等,以及考慮為小微運輸企業的租賃業務提供第一損失擔保,

對沖相關風險等(Sankaretal.2022;Koketal.2023;Coyneetal.2023)。部分場景下MY2030新能源貨車與由于集疏港運輸場景中的起始點/目的地以及運營時刻表相對固定,車輛會定期返回港口(或港口附近停車場),并在相對較小的區域范圍內運營,因而,具備條件的運輸企業可選擇電池容量較小的純電動半掛牽引車,并部署足夠多的快充基礎設施,實現“一天多充”,從而降低純電動貨車購置成本與TCO。為支持小容量電池的純電動貨車,相關企業需要對充電基礎設施布局與運營分別進行優化,包括在運輸的起始地/目的地、中途、工廠停車場與物流場站部署足夠數量的快充基礎設施,保障充足的停車位數量與電網容量(Kotzetal.2022);此外,運輸企業也需要協調純電動 a.4.5噸輕型普通貨 b.42噸半掛牽引0

0

(NEICEV)/ICEV。百分比為零,表示新能源貨車購置成本與燃油貨車相同。這里,購置成本不考慮任何政策影響,包括新能源貨車購置補貼或燃油貨車購置稅對購置成本的影響。縮略詞:BET=純電動貨車;FCET=氫燃料電池貨車;NEV=新能源汽車;ICEV=燃油汽車;UD=城市運;RD=區域運;PO_TRIP=港口內運(“單程運距”法);DDC_DVKT=集疏港運(“日行駛里程”法);DDC_TRIP=集疏港運(“單程運距”法)。源貨車能量消耗量改進以及載質量損失改善,氫燃料電池貨車TCO下降將主要依靠燃料電池系統成本與氫氣價格的下降。設計廣泛適用的純電動貨車。不同場景下,純電動及運輸企業采購適合的純電動貨車帶來挑戰,尤其是考慮本文分析顯示,未來新能源貨車的能

量消耗量(包括新能源貨車與燃油貨車的能效比)對其實現TCO平價的時間有較大影響,因此,建議有關部門收集新能源貨車不同場景、不同工況下的實際能量消耗量數據,并考慮出臺針對新能源貨車能量消耗量的標準。此外,目前在運營的燃油貨車分場景的日/年行駛里程信息、道路流量信息、貨車停車信息等數據,對識別近期適宜新能源貨車推廣的場景,規劃充電/加氫基礎設施、配置新能源貨車參數都起到重要作用,因此,建議有關部門收集這些統計數據并與行業相關方分享,以支持精細化的政策制定與企業投資。TCQTLCandMOV3MENT202)因此,除本文涉及的政策組合以外,有關部門還應統籌 例如,本文分析顯示,同為集疏港運輸場景,唐山市49噸BET100半掛牽引車在MY2022就已實現與柴油半掛牽引車的TCO平價,比本文中深圳市42噸BET200半掛牽引車實現TCO平價的時間更早,如圖ES-4所示。ES-4|深圳市和唐山市集疏港運輸場景中新能源半掛牽引車與柴油半掛牽引車實現TCOBET

FCET(混合

FCET(純氫)貨車車型行駛工況貨物類型(千米2030 重說明:本文假設唐山市集疏港運場景的單程運距為100千米,深圳市集疏港運場景的單程運距為200千米。此外,MY2022唐山市49噸柴油半掛牽引車的能量消耗量為64升/100千米,230/10018/100千米。E=FCET=氫燃料電池貨車;混合=插電式混合動力模式;純氫=DDC_TRIP=集疏港運DDC_DVKT=集疏港運。來源:作者計算。EXECUTIVESUMMARY?Totacklesmallfleetoperators’concernsandacceleratezero-emissiontruck(ZET)adoption,weassessedthetechno-economicfeasibilityofZETsoverthetimeframeof2022?2030acrossusecasesindifferentmodelyears(MYs)forShenzhenandFoshaninGuangdongProvince.??Thepromotionofbatteryelectrictrucks(BET)inurbandelivery,portoperation,anddrayagedutycyclesshouldbeprioritizedbecausetheirtotalcostofownership(TCO)paritywithdieseltruckswillbereachedbeforeMY2025,particularlywithcomprehensivepolicyincentives.??ProposedcomprehensivepoliciesinthisstudyareeffectivetomoveZETTCOparityyearswithdieseltrucksearlierthanMY2025inmostusecases.BETsbenefitedmorefromthecomprehensivepoliciesinTCOparityyearreductionthanfuel-cellelectrictrucks(FCETs).??ChoosingBETswithsmallerbatteries,ensuringthatchargingfacilitiesaresufficientlyavailable,andadjustingoperationschedulestoallowformultiplewithin-daychargesareimportanttoreduceBETs’TCO.??GapsinpurchasecostsbetweenZETsandinternalcombustionenginevehicles(ICEVs)remainlargebyMY2030,althoughTCOparityisreachedinmostusecases.Therefore,financingmechanismslikeleasingareessentialtoeaseZETs’up-frontcostburdens.??operationalflexibility,costeffectiveness,andmassproduction.?AboutthisToreducecarbonandairpollutantemissions,promotingZETs—referringtobatteryelectrictrucksandfuel-cellelectrictrucks—isimportant(XueandLiu2022).Unlikebusesandprivatecars,thetruckingindustryisdominatedbysmall-andmedium-sizedenterprises(SMEs)inChina(TUC2022a).Currently,ZETsinChinesecitieswereprimarilyadoptedbylargefleetoperatorsthatwerelesscost-sensitive.Now,tofurtherpromoteZETs,addressingthedemandside,particularlymorecost-consciousandlesstechnology-savvySMEs’concerns,iscriticalforZETs’futureuptake.Fromthedemandperspective,smallfleetoperatorsareoftenconcernedaboutthefollowingissuesrelatedtoZETtransition:(1)whethertheoperationofZETsistechnologicallyfeasiblewhererangeconstraintsorpayloadlosscanbeavoided;(2)whetherpurchasecostgapsbetweenZETsandICEVsareacceptablysmall;and(3)whetherTCOparitywithequivalentICEtruckscanbereached(Toletal.2022).Totackledemand-sideconcernsandrampupZETadoption,itisimportanttounderstandthecurrentoperationalandcostchallengesofZETs,whatinterventionsareeffectiveinovercomingthechallenges,andwhichusecaseandzero-emissiontechnologytoprioritizeandwhen.Toaddressthequestionsmentionedearlier,thisstudychoosesoneofChina’sfront-runnerregions

ofZETtransition,GuangdongProvince,asanexample.Toreducethedatacollectionefforts,wechoosethecitiesofShenzhenandFoshaninGuangdongforin-depthanalysis.ThetwoarenotonlyleadingZETtransitionsinGuangdong,butalsosetambitiousgoalsforZETadoption.?Weassessedthetechno-economicfeasibilityofZETsoverthetimeframeof2022–2030acrossdifferentusecasesandMYs.Thebaseyearissetto2022wherethemostrecentdataareavailable.Theanalysiswascarriedoutfor14localizedusecases:??Fivetrucksegments,includingdeliveryvans,4.5-t(ton)light-dutytrucks(LDTs),18-tstraighttrucks,31-tdumptrucks,and42-ttractortrailers.??Fourdutycycles,namely,urbandelivery(UD),regionaldelivery(RD),portoperation(PO),anddrayagedutycycles(DDC).?Twotypesofgoodstransported,includinglightcargoandheavycargo.?Inthisstudy,thetechno-economicfeasibilityofZETsisassessedindifferentusecases,basedonthreevariablesessentialforsmallfleetoperatorstodecideifZETtransitionisfeasible(Hunteretal.2021;Toletal.2022):?ZETs’operationalfeasibility.Inthisstudy,operationalfeasibilityisevaluatedbythe ?sizesofkeycomponentsforZETs,includingenergystoragecapacities,peakpoweroutputs,andcurbweights,tomeettherangesandwheelpowerdemandsindifferentusecasesduringMY2022andMY2030.TheresultingcomponentsizingisusefultofindtheproperZETmodelsforthegivenusecasethatcancomeatareasonablecostandmeettheday-to-dayoperationalrequirements.??DifferencesofpurchasecostsbetweenZETsandICEVs.Here,ZETs’purchasecostsareprojectedbasedonthetechnologyprogressofkeycomponents(suchasbatterypacks,electricdrives,fuelcell(FC)systems,andhydrogenstoragetanks)characterizedbythelearningcurveoutlinedbyYelle(1979)inwhichthereductioninunitcostsofeachkeycomponentisafunctionofaccumulatedproductionvolumes.Wefurtheremployedexistingliteratureandmarketpredictionstovalidateandadjustthe?TCOgapsbetweenZETsandICEVs.TCOwasevaluatedbyaddingupthecapital,operation,andmaintenanceexpenditureofthevehicles;themid-lifereplacementcostsofkeycomponents(suchasbatterypacks);andtheopportunitycostsofthelossinZETs’payloadcapacity.Duetolimiteddataavailability,costssuchasvehicleresidualvaluesandrefuelinglaborcostsarenotconsideredinthisstudy.Theusecaseswithnear-termopportunitiesforZETtransitionareidentified,basedonZETs’TCOparityyearswithICEVs.Further,weevaluatethepossiblerolesplayedbydifferentinterventions—includingtechnologicaldevelopment,policyincentives,operationalimprovements,andbusinessmodels—inaffectingthepreviouslymentioneddecisionvariablesandinacceleratingtheachievementoradvancesofTCOparityyearsrelativetodieseltrucks.Further,weusedanexampletoillustrateiftheconclusionscouldbeappliedtoothercitiesanddiscussedthecaveatsanduncertaintiesoftheanalysis.ResearchWithoutZETincentives,BETpromotioninPO,DDC,andurbandelivery(UD)couldbeprioritized,giventhattheTCOparity

withICEtrucksintheseusecaseswillbereachedearlierthanotherusecases.BETs,exceptfordumptrucks,haveTCOcostadvantagesinPO,DDC,andUDinabsenceofZETincentives.Intheseuse?cases,BETswillreachTCOparityrelativetoICEVcounterpartsbeforeMY2027.ThisisbecauseBETsaremuchmoreenergyefficientthanICEVsinPOandUDbytakingadvantageoffrequentstop-and-goestorecoupenergiesfromregenerativebraking.Bycontrast,batteryelectricdumptrucksarelesscostadvantageous,becauseoftheprominentpayloadlossissue.Particularlyintwoinstances:?Battery-electric42-ttractortrailersinPO,DDC,andUDwillreachTCOparitywithdieseltractortrailersbeforeMY2025,representingoneofthemostpromisingtrucksegmentstobeelectrifiedatthemoment.Thisisbecause:(1)BETtractortrailersinShenzhenandFoshanmostlycarrylightweightgoodsand(2)operationaloptimizationmeasurestakenbyfleetoperatorsinDDC—includingusingsmallbatterycapacitiestofulfilltheoperationandmatchingBETconfigurationswithcharging?facilityavailability—arehelpfulforBETtoreachTCOparityearly,relativetodieseltrucks.?Battery-electric4.5-tLDTsandstraighttrucksinUDwillreachTCOparityrelativetotheirdieselcounterpartsbyMY2027.Particularly,whencarryinglightweightgoods,bothvehiclesegmentshaveachievedcostparitynow(MY2022–2023),whereaswhentransportingheavygoods,theparityyearswillbepostponedtoMY2025–2027afterbeingpenalizedforthepayloadlosses.Bycontrast,FCETs’TCOarelowerthanBETsinRD.InRD,ZETs’TCOcostparityrelativetoICEVswillbeachievedaroundMY2028–2030,muchlaterthanUD.BETsarelesscostadvantageousinRDbecause:(1)ICEVsarerelativelymoreenergy-efficientforhigh-speedhighwaydrivingthanurbandriving;(2)forsimplicity,thisstudydoesnotdifferentiateFCETs’energyefficiencybetweenUDandRD;therefore,wemayhavegivenFCETsmorecostadvantagesinRD.FigureES-1|ZETTCOparityrelativetoICEVsforalluseBET

FCET

FCET(H2-only)Light

Above4.5-t18-

HeavyHeavyLightHeavyLight Heavy 31-tdump42-

LightHeavygoodsHeavyLight

Note:Thisstudyassumesthattheusefullifeofthe31-tdumptruckisfiveyearsandthatofothervehiclesegmentsaresixyearsbasedonPers.Comm.Abbreviations:TCO=totalcostofownership;BET=batteryelectrictruck;FCET=fuelcellelectrictruck;ICEV=internalcombustionenginevehicle;H2-only=hydrogen-onlymode;hybrid=hybridmode;VKT=vehiclekilometerstraveled;UD=urbandelivery;RD=regionaldelivery;PO_TRIP=portoperation(usingthetripdistancemethod);PO_DVKT=portoperation(usingSource:WRIauthors’ChangesinenergypriceswillgreatlyaffectZETs’parityyearswithICEtrucksinsomeusecases.ThepreviouslymentionedconclusiononTCOparityyearsisvalidwhenthedieselpriceisatthe2022levelof8.1ChineseYuan(CNY)/literandthechargingcostisfixedat1.2CNY/kWh.Ifdieselpricesdroptothe2019and2021averagepriceof6.5CNY/L,andchargingcostsrisesto1.4CNY/kWhandabove(duetowidespreadadoptionofultra-fastchargers),batteryelectrictruckswillachieveTCOparitywithdieseltrucksatamuchlatertimefor42-ttractortrailersinDDC(parityyear=~MY2030)and18-ttonstraighttrucksinUDwithlightgoodstransportation(parityyear=~MY2030).Similarly,forFCETs,ifthedieselpricesremainatthe2022level,thebreak-evengreenhydrogenpriceinMY2030isaround30CNY/kg.However,ifthedieselpricesdroptothe2021averageprice,FCETsareunlikelytoachieveTCOparitywithdieseltrucksatanytimebeforeMY2030.Therefore,withlowerdieselprices,removalofdieselsubsidies(Blacketal.2023),increasedtaxesondieselprices(OECD2022),oralternativeenergyincentives(onelectricityandhydrogen)shouldbeconsidered,tomaintainthecostcompetitivenessofZETs.ComprehensivepoliciesareeffectivetomoveZETTCOparityyearswithICEtrucksearlier,especiallyforBETs.Inthisstudy,wefocusonthecomprehensive(nationalandlocal)policiestheimpactsofwhichonTCOcanbequantifiedunderthisstudy’sTCOmethodologyframework,includingpurchasesubsidy,taxexemption,energy(electricity/hydrogenfuel)incentives,carbonpricingonconventionalfuels,roadaccessprivileges,reductionofexpresswayroadtolls,increasesofmaximumauthorizedweightsofZETs(alsoknownasZETweightallowance),andfinancingcostreductions.Thereisnosilverbullet.ComprehensivepolicyincentivesaremoreeffectivetobringingforwardZETs’TCOparityyearstoanearlierdatethansinglemeasures.BETs’TCOparityyearsbenefitmorefromtheproposedcomprehensivepoliciesinthisstudy.Underthecombinationoftheproposedpoliciesinthis

study(withoutaBETpurchasesubsidy),BETswillreachTCOparitywithdieselcounterpartsinmostusecasesbeforeMY2025,zerotonineyearsearlierthanthecasewithoutpolicyincentives.Bycontrast,evenwithgreateramountsofsubsidies(includinganFCETpurchasesubsidy),FCETswillreachTCOparitywithdieselcounterpartsbeforeMY2028,threetosixyearsearlierthanthecasewithoutpolicyincentives.Overall,withtheeightproposedpolicyincentives,theTCOparityyearsofBETsarezerotosixyearsearlierthanFCETsinmostusecases,makingBETsthemostcost-competitiveZEToption.TheimpactsofpoliciesonZETs’TCOparityyearsandTCOreductionareusecase-specific.ZETsbenefitfromtheproposedpoliciesoftaxexemption,energyincentives,roadaccessprivileges,reductionofexpresswayroadtolls,financingcostreduction,andincreases?ofmaximumauthorizedvehicleweightsinthisstudyinTCOreduction.TheimprovementincostparityisnotsignificantwhenapplyingthecarbonpricingmeasureduetoChina’scurrentlowcarbonprices.Specifically,??theproposedpurchaseandownershiptaxexemptionandenergyincentivesareessentialtobridgetheTCOgapsbetweenZETsandICEVs,formostusecases;??inRDandDDCbecauseweassumethatthepolicyworksonvehiclekilometerstraveled(VKTs),andbothusecaseshavelongVKTs;??thereductionofexpresswayroadtollsismoreinfluentialfor42-tontractortrailers’RDandofVKTsonexpresswaysandhightollrates;??theZETweightallowanceisusefulforheavygoodstransportation;and?thefinancingcostreductionisconducivetomovingforwardTCOparityyearsinUD.TheFCETpurchasesubsidyanalyzedinthisstudyisfoundtobeoneofthemostinfluentialpolicyinterventionsforFCETs’TCOreduction;butgovernmentsshouldrefrainfromusinglargepurchasesubsidiestoboostZETadoptiontoavoidoversupplyoftruckcapacitiesinthemarket.Withthepurchasesubsidyassumedinthisstudy,FCETs’timetoTCOparityisreducedbyzerototwoyearsforallusecases,achievingTCOparitywithitsdieselcounterpartbyMY2026–2030.Ofnote,consideringthat

publicsubsidiestopromoteZETswoulddistortthemarketsupplyoftruckcapacitiesandreduceZETs’costcompetitiveness(Pers.Comm.2023a),governmentsshouldrefrainfromusinglargepurchasesubsidiestostimulateZETadoption.Instead,scrappagesubsidiesorothernon-subsidymeasuressuchasroadaccessprivilegesofferviablealternatives.FigureES-2|ZETTCOparityrelativetoICEVswithpolicy18-tstraightLightgoods-200km

Heavygoods-200km

Lightgoods-500km

Heavygoods-500km 202220232024202520262027202820292030 202220232024202520262027202820292030NoTaxexemptionFinancingChargingaccesschargeweightCarbonPolicyNoTaxexemptionFinancingPurchaseHydrogenaccesschargeweightCarbonPolicyFCET(H2-FigureES-2|ZETTCOparityrelativetoICEVswithpolicyincentives31-tdumpHeavygoods-200km Heavygoods-300km

NoFinancingRoadFCET(H2-only)NopolicyFinancingRoadRoadchargeFigureES-2|ZETTCOparityrelativetoICEVswithpolicyincentives42-ttractorLightgoods-200km

Lightgoods-500km

Lightgoods-200km

Lightgoods-500kmAboveAboveAboveNoFinancingRoadRoadchargeFCET(H2-NoFinancingRoadRoadchargeNote:Fora42-ttractortrailer,DDCdenotestheDDC_TRIPusecasesforBETsandtheDDC_DVKTusecasesforSource:WRIauthors’Apartfrompolicies,financingmechanisms,operationaloptimization,andtechnologyimprovementsarealsoessentialtoacceleratetheadoptionofFinancingmechanismsareessentialtoeaseZETs’up-frontpurchasecosts.AlthoughtheTCOparitywithICEtrucksisreachedinmostusecasesbyMY2030,tremendousgapsinpurchasecostsbetweenZETsandICEVsremain.ByMY2030,thepurchasecostsofZETsarestill53to322percenthigherthanthoseofICEVsinallusecasesexaminedbythisstudy.Toeasefleetoperators’burdenoncostlyupfrontexpensesofZETs—particularlyforsmallfleetoperators—andallocatetherisksofZETtransitiontoappropriatestakeholders,itisnecessaryforprivateandpublicplayerstotakeactions,includingreducingtheminimumdownpaymentrequirementsonZETloans;encouragingZETleasingorbatteryswapping;unlocking

finance(throughreducedinterestedratesandextendedrepaymentterms)andblendedfinanceforZETfinancing;andprovidingtaxbenefits,flexibledepreciation,orfirstlossguaranteesfornewbusinessmodels.Operationaloptimizationisanecessarymeasuretoreducecostsandimproveoperationalfeasibility.AsinthecaseofDDC,choosingBETswithsmallerbatteries,ensuringchargingfacilitiesaresufficientlyavailable,andadjustingoperationschedulestoallowBETsformorethanonechargeadayareimportanttoreduceBETs’TCO.Forthistypeofoperationtowork,itiscrucialtohave:(1)broadavailabilityof(ultra)-fastchargingfacilities,parkingspaces,andgridcapacitiesattheDDC’scustomerlocations(Kotzetal.2022);and(2)BETs’operationschedulesthatallowforsufficientchargingtimewindows—forexample,timingchargingwithloading(orunloading)oftrucksorbreaktimesofdrivers.FigureES-3|PercentagedifferencesinpurchasecostsbetweenZETsandICEVsfor a.4.5-t b.42-ttractor0

0

Note:ThepercentagerepresentsthedifferenceinthepurchasecostsbetweenZETsandcomparableICEVsdividedbythepurchasecostsofICEVs,thatis,(ZET-ICEV)/ICEV.ZeropercentindicatesnodifferencebetweenthepurchasecostsofZETsandICEVs.Nopurchasesubsidyortaxisconsideredforthepurchasecosts.Abbreviations:BET=batteryelectrictruck;FCET=fuelcellelectrictruck;ICEV=internalcombustionenginevehicle;VKT=vehiclekilometerstraveled;UD=urbandelivery;RD=regionaldelivery;PO_TRIP=portoperation(usingthetripdistancemethod);DDC_DVKT=drayagedutycycle(usingthedailyVKTmethod);DDC_TRIP=drayagedutycycle(usingthetripdistancemethod).Source:WRIauthors’AcceleratingtechnologydevelopmentsisessentialtoreduceZET’sTCOandmoveitsparityyearstoanearlierBatterycostreduction,vehicleenergy-efficiencyimprovement,andbatteryenergydensityincreasesarecriticalforreducingBETs’TCO,whilethecostreductionoftheFCsystemsandgreenhydrogenpricesareessentialtobringdownFCETs’TCO(FCsystemcostsaremoreinfluentialforUD,whilehydrogenpricesaremoreimportantforRD).ItisimportanttodesignBETswithflexibility.SignificantvariationsinBETbatterycapacitiesexist.Forexample,evenwithinthesame-usecase,thedifferencesinbatterycapacitiesofBETsexaminedinthisstudycouldvaryby51kWhto322kWhinMY2025.Giventheday-to-dayoperationalvariabilityofsmallfleetoperators,designingabroadlyapplicableBETthatiscapableofmeetingthemajorityoperation(intermsofranges)inanoften-appliedusecasecritical.ThismeansbothOriginalEquipmentManufacturers(OEMs)andfleetoperatorsshouldhaveathoroughunderstandingexistingdieselfleets’dailymileageDa?ta-drivenandmulti-dimensionalpolicymakingisnecessary.1.DataonZETs’energyefficiencyandexistingdieseltruckfleets’mileageareimportanttoimprovetheTCOestimationandtoinformpolicymaking.EnergyefficiencywouldgreatlyaffectZETs’parityyearsanddeterminewhichusecasetoprioritizeZETpromotion.Further,truckfleets’mileageprofilesarealsocriticaltothedesignofbroadlyapplicableZETs.Therefore,itisimportantforgovernmentstogatherZETs’real-worldenergy-efficiencyandICEVs’mileagedatabyusecaseandshareamongkeystakeholders,suchasOEMs.2.Fleetoperatorsinrealitywouldtakemultiplefactorsintoconsideration,suchasthesafetyandsecurityofZETs,shippers’requirements,marketandprofitability,andcustomers’awarenessoftherecentdevelopmentofZETswhen

decidingifZETtransitionisfeasibleandMOV3MENT2022).Therefore,itisalsonecessarytogobeyondthepoliciesexaminedinthisstudytoconsidermorepolicyoptions,suchasenhancingZETs’firesafety,enforcingairpollutionpreventionpolicies,improvingZETs’residualvalues,andorganizingpubliceducationcampaigns(particularlyforsmallfleetoperators).Th?econclusionsfromthestudybeapplicabletocitieswithsimilarusecasecharacteristics,includingtrucksegmentdeployed,typeofgoodstransported,drivingcycles,andambienttemperature.Citieswithdifferentcharacteristicsshouldbecautiouswhenapplyingthisstudy’sconclusions.Forexample,a49-tonBET100tractortrailerinTangshan’sDDChadreachedTCOparitywithitsdieselcounterpartinMY2022,earlierthanShenzheninthisstudy.ThisisbecausetractortrailersinTangshandonotrequirelargebatterycapacities(tripdistanceswithin100km)andhavealargeproportionofthedailyVKTsperformedneardocksorintheurbanenvironment(Maoetal.2023). FigureES-4|ZETs’TCOparityyearsrelativetoICEtrucksfortheDDCusecaseinShenzhenandBET

FCET

FCET(H2-only)新能源貨車在城市和區域運輸場景中的技術與經濟可行性分析新能源貨車在城市和區域運輸場景中的技術與經濟可行性分析以中國廣東省為 49-ttractorHeavyLight42-ttractorAboveVEHICLEDUTYCYCLECARGOTYPEDAILYNote:ThisstudyassumesthatthetripdistanceforTangshan’sDDCusecaseis100km,whilethatforShenzhenis200km.Further,theenergyconsumptionofaMY202249-tdieseltractortraileris64L/100km,aBETis230kWh/100km,andanFCETis18kg/100km.Abbreviations:BET=batteryelectrictruck;FCET=f

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論