




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
張家界市一中2025屆高三六校第一次聯考數學試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設全集U=R,集合,則()A. B. C. D.2.設全集,集合,.則集合等于()A. B. C. D.3.已知角的終邊與單位圓交于點,則等于()A. B. C. D.4.如圖,在直角梯形ABCD中,AB∥DC,AD⊥DC,AD=DC=2AB,E為AD的中點,若,則λ+μ的值為()A. B. C. D.5.已知復數(為虛數單位)在復平面內對應的點的坐標是()A. B. C. D.6.已知定義在上的奇函數滿足,且當時,,則()A.1 B.-1 C.2 D.-27.如圖,雙曲線的左,右焦點分別是直線與雙曲線的兩條漸近線分別相交于兩點.若則雙曲線的離心率為()A. B.C. D.8.命題“”的否定是()A. B.C. D.9.已知數列的前項和為,且,,則()A. B. C. D.10.是拋物線上一點,是圓關于直線的對稱圓上的一點,則最小值是()A. B. C. D.11.三棱錐的各個頂點都在求的表面上,且是等邊三角形,底面,,,若點在線段上,且,則過點的平面截球所得截面的最小面積為()A. B. C. D.12.等腰直角三角形的斜邊AB為正四面體側棱,直角邊AE繞斜邊AB旋轉,則在旋轉的過程中,有下列說法:(1)四面體EBCD的體積有最大值和最小值;(2)存在某個位置,使得;(3)設二面角的平面角為,則;(4)AE的中點M與AB的中點N連線交平面BCD于點P,則點P的軌跡為橢圓.其中,正確說法的個數是()A.1 B.2 C.3 D.4二、填空題:本題共4小題,每小題5分,共20分。13.“六藝”源于中國周朝的貴族教育體系,具體包括“禮、樂、射、御、書、數”.某校在周末學生業余興趣活動中開展了“六藝”知識講座,每藝安排一節,連排六節,則滿足“禮”與“樂”必須排在前兩節,“射”和“御”兩講座必須相鄰的不同安排種數為________.14.記實數中的最大數為,最小數為.已知實數且三數能構成三角形的三邊長,若,則的取值范圍是.15.設復數滿足,其中是虛數單位,若是的共軛復數,則____________.16.已知向量,,若向量與向量平行,則實數___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知集合,集合,.(1)求集合B;(2)記,且集合M中有且僅有一個整數,求實數k的取值范圍.18.(12分)已知函數(1)若,試討論的單調性;(2)若,實數為方程的兩不等實根,求證:.19.(12分)如圖,四棱錐中,底面是邊長為的菱形,,點分別是的中點.(1)求證:平面;(2)若,求直線與平面所成角的正弦值.20.(12分)第十四屆全國冬季運動會召開期間,某校舉行了“冰上運動知識競賽”,為了解本次競賽成績情況,從中隨機抽取部分學生的成績(得分均為整數,滿分100分)進行統計,請根據頻率分布表中所提供的數據,解答下列問題:(1)求、、的值及隨機抽取一考生其成績不低于70分的概率;(2)若從成績較好的3、4、5組中按分層抽樣的方法抽取5人參加“普及冰雪知識”志愿活動,并指定2名負責人,求從第4組抽取的學生中至少有一名是負責人的概率.組號分組頻數頻率第1組150.15第2組350.35第3組b0.20第4組20第5組100.1合計1.0021.(12分)在平面直角坐標系xOy中,橢圓C:x2a2(1)求橢圓C的方程;(2)假設直線l:y=kx+m與橢圓C交于A,B兩點.①若A為橢圓的上頂點,M為線段AB中點,連接OM并延長交橢圓C于N,并且ON=62OM,求OB的長;②若原點O到直線l的距離為1,并且22.(10分)已知函數f(x)=x-lnx,g(x)=x2-ax.(1)求函數f(x)在區間[t,t+1](t>0)上的最小值m(t);(2)令h(x)=g(x)-f(x),A(x1,h(x1)),B(x2,h(x2))(x1≠x2)是函數h(x)圖像上任意兩點,且滿足>1,求實數a的取值范圍;(3)若?x∈(0,1],使f(x)≥成立,求實數a的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
求出集合M和集合N,,利用集合交集補集的定義進行計算即可.【詳解】,,則,故選:A.【點睛】本題考查集合的交集和補集的運算,考查指數不等式和二次不等式的解法,屬于基礎題.2、A【解析】
先算出集合,再與集合B求交集即可.【詳解】因為或.所以,又因為.所以.故選:A.【點睛】本題考查集合間的基本運算,涉及到解一元二次不等式、指數不等式,是一道容易題.3、B【解析】
先由三角函數的定義求出,再由二倍角公式可求.【詳解】解:角的終邊與單位圓交于點,,故選:B【點睛】考查三角函數的定義和二倍角公式,是基礎題.4、B【解析】
建立平面直角坐標系,用坐標表示,利用,列出方程組求解即可.【詳解】建立如圖所示的平面直角坐標系,則D(0,0).不妨設AB=1,則CD=AD=2,所以C(2,0),A(0,2),B(1,2),E(0,1),∴(-2,2)=λ(-2,1)+μ(1,2),解得則.故選:B【點睛】本題主要考查了由平面向量線性運算的結果求參數,屬于中檔題.5、A【解析】
直接利用復數代數形式的乘除運算化簡,求得的坐標得出答案.【詳解】解:,在復平面內對應的點的坐標是.故選:A.【點睛】本題考查復數代數形式的乘除運算,考查復數的代數表示法及其幾何意義,屬于基礎題.6、B【解析】
根據f(x)是R上的奇函數,并且f(x+1)=f(1-x),便可推出f(x+4)=f(x),即f(x)的周期為4,而由x∈[0,1]時,f(x)=2x-m及f(x)是奇函數,即可得出f(0)=1-m=0,從而求得m=1,這樣便可得出f(2019)=f(-1)=-f(1)=-1.【詳解】∵是定義在R上的奇函數,且;∴;∴;∴的周期為4;∵時,;∴由奇函數性質可得;∴;∴時,;∴.故選:B.【點睛】本題考查利用函數的奇偶性和周期性求值,此類問題一般根據條件先推導出周期,利用函數的周期變換來求解,考查理解能力和計算能力,屬于中等題.7、A【解析】
易得,過B作x軸的垂線,垂足為T,在中,利用即可得到的方程.【詳解】由已知,得,過B作x軸的垂線,垂足為T,故,又所以,即,所以雙曲線的離心率.故選:A.【點睛】本題考查雙曲線的離心率問題,在作雙曲線離心率問題時,最關鍵的是找到的方程或不等式,本題屬于容易題.8、D【解析】
根據全稱命題的否定是特稱命題,對命題進行改寫即可.【詳解】全稱命題的否定是特稱命題,所以命題“,”的否定是:,.故選D.【點睛】本題考查全稱命題的否定,難度容易.9、C【解析】
根據已知條件判斷出數列是等比數列,求得其通項公式,由此求得.【詳解】由于,所以數列是等比數列,其首項為,第二項為,所以公比為.所以,所以.故選:C【點睛】本小題主要考查等比數列的證明,考查等比數列通項公式,屬于基礎題.10、C【解析】
求出點關于直線的對稱點的坐標,進而可得出圓關于直線的對稱圓的方程,利用二次函數的基本性質求出的最小值,由此可得出,即可得解.【詳解】如下圖所示:設點關于直線的對稱點為點,則,整理得,解得,即點,所以,圓關于直線的對稱圓的方程為,設點,則,當時,取最小值,因此,.故選:C.【點睛】本題考查拋物線上一點到圓上一點最值的計算,同時也考查了兩圓關于直線對稱性的應用,考查計算能力,屬于中等題.11、A【解析】
由題意畫出圖形,求出三棱錐S-ABC的外接球的半徑,再求出外接球球心到D的距離,利用勾股定理求得過點D的平面截球O所得截面圓的最小半徑,則答案可求.【詳解】如圖,設三角形ABC外接圓的圓心為G,則外接圓半徑AG=,設三棱錐S-ABC的外接球的球心為O,則外接球的半徑R=取SA中點E,由SA=4,AD=3SD,得DE=1,所以OD=.則過點D的平面截球O所得截面圓的最小半徑為所以過點D的平面截球O所得截面的最小面積為故選:A【點睛】本題考查三棱錐的外接球問題,還考查了求截面的最小面積,屬于較難題.12、C【解析】
解:對于(1),當CD⊥平面ABE,且E在AB的右上方時,E到平面BCD的距離最大,當CD⊥平面ABE,且E在AB的左下方時,E到平面BCD的距離最小,∴四面體E﹣BCD的體積有最大值和最小值,故(1)正確;對于(2),連接DE,若存在某個位置,使得AE⊥BD,又AE⊥BE,則AE⊥平面BDE,可得AE⊥DE,進一步可得AE=DE,此時E﹣ABD為正三棱錐,故(2)正確;對于(3),取AB中點O,連接DO,EO,則∠DOE為二面角D﹣AB﹣E的平面角,為θ,直角邊AE繞斜邊AB旋轉,則在旋轉的過程中,θ∈[0,π),∠DAE∈[,π),所以θ≥∠DAE不成立.(3)不正確;對于(4)AE的中點M與AB的中點N連線交平面BCD于點P,P到BC的距離為:dP﹣BC,因為<1,所以點P的軌跡為橢圓.(4)正確.故選:C.點睛:該題考查的是有關多面體和旋轉體對應的特征,以幾何體為載體,考查相關的空間關系,在解題的過程中,需要認真分析,得到結果,注意對知識點的靈活運用.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
分步排課,首先將“禮”與“樂”排在前兩節,然后,“射”和“御”捆綁一一起作為一個元素與其它兩個元素合起來全排列,同時它們內部也全排列.【詳解】第一步:先將“禮”與“樂”排在前兩節,有種不同的排法;第二步:將“射”和“御”兩節講座捆綁再和其他兩藝全排有種不同的排法,所以滿足“禮”與“樂”必須排在前兩節,“射”和“御”兩節講座必須相鄰的不同安排種數為.故答案為:1.【點睛】本題考查排列的應用,排列組合問題中,遵循特殊元素特殊位置優先考慮的原則,相鄰問題用捆綁法,不相鄰問題用插入法.14、【解析】試題分析:顯然,又,①當時,,作出可行區域,因拋物線與直線及在第一象限內的交點分別是(1,1)和,從而②當時,,作出可行區域,因拋物線與直線及在第一象限內的交點分別是(1,1)和,從而綜上所述,的取值范圍是.考點:不等式、簡單線性規劃.15、【解析】
由于,則.16、【解析】
由題可得,因為向量與向量平行,所以,解得.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)由不等式可得,討論與的關系,即可得到結果;(2)先解得不等式,由集合M中有且僅有一個整數,當時,則M中僅有的整數為;當時,則M中僅有的整數為,進而求解即可.【詳解】解:(1)因為,所以,當,即時,;當,即時,;當,即時,.(2)由得,當,即時,M中僅有的整數為,所以,即;當,即時,M中僅有的整數為,所以,即;綜上,滿足題意的k的范圍為【點睛】本題考查解一元二次不等式,考查由交集的結果求參數范圍,考查分類討論思想與運算能力.18、(1)答案不唯一,具體見解析(2)證明見解析【解析】
(1)根據題意得,分與討論即可得到函數的單調性;(2)根據題意構造函數,得,參變分離得,分析不等式,即轉化為,設,再構造函數,利用導數得單調性,進而得證.【詳解】(1)依題意,當時,,①當時,恒成立,此時在定義域上單調遞增;②當時,若,;若,;故此時的單調遞增區間為,單調遞減區間為.(2)方法1:由得令,則,依題意有,即,要證,只需證(不妨設),即證,令,設,則,在單調遞減,即,從而有.方法2:由得令,則,當時,時,故在上單調遞增,在上單調遞減,不妨設,則,要證,只需證,易知,故只需證,即證令,(),則==,(也可代入后再求導)在上單調遞減,,故對于時,總有.由此得【點睛】本題考查了函數的單調性、最值問題,考查導數的應用以及分類討論思想,轉化思想,屬于難題.19、(1)見解析;(2).【解析】
(1)取的中點,連接,通過證明,即可證得;(2)建立空間直角坐標系,利用向量的坐標表示即可得解.【詳解】(1)證明:取的中點,連接.是的中點,,又,四邊形是平行四邊形.,又平面平面,平面.(2),,同理可得:,又平面.連接,設,則,建立空間直角坐標系.設平面的法向量為,則,則,取.直線與平面所成角的正弦值為.【點睛】此題考查證明線面平行,求線面角的大小,關鍵在于熟練掌握線面平行的證明方法,法向量法求線面角的基本方法,根據公式準確計算.20、(1),,,;(2)【解析】
(1)根據第1組的頻數和頻率求出,根據頻數、頻率、的關系分別求出,進而求出不低于70分的概率;(2)由(1)得,根據分層抽樣原則,分別從抽出2人,2人,1人,并按照所在組對抽出的5人編號,列出所有2名負責人的抽取方法,得出第4組抽取的學生中至少有一名是負責人的抽法數,由古典概型概率公式,即可求解.【詳解】(1),,,由頻率分布表可得成績不低于70分的概率約為:(2)因為第3、4、5組共有50名學生,所以利用分層抽樣在50名學生中抽取5名學生,每組分別為:第3組:人,第4組:人,第5組:人,所以第3、4、5組分別抽取2人,2人,1人設第3組的3位同學為、,第4組的2位同學為、,第5組的1位同學為,則從五位同學中抽兩位同學有10種可能抽法如下:,,,,,,,,,,其中第4組的2位同學、至少有一位同學是負責人有7種抽法,故所求的概率為.【點睛】本題考查補全頻率分布表、古典概型的概率,屬于基礎題.21、(1)x22+y2【解析】
(1)根據橢圓的幾何性質可得到a2,b2;(2)聯立直線和橢圓,利用弦長公式可求得弦長AB,利用點到直線的距離公式求得原點到直線l的距離,從而可求得三角形面積,再用單調性求最值可得值域.【詳解】(1)因為兩焦點與短軸的一個頂點的連線構成等腰直角三角形,所以a=2又由右準線方程為x=2,得到a2解得a=2,c=1,所以所以,橢圓C的方程為x2(2)①設B(x1,y1∵ON=6因為點B,N都在橢圓上,所以x122+y12所以OB=x②由原點O到直線l的距離為1,得|m|1+k2聯立直線l的方程與橢圓C的方程:y=kx+mx2設A(x1,y1OA=(1+k2)所以k△OAB的面積S==1因為S=2λ(1-λ)在[并且當λ=45時,S=225所以△OAB的面積S的范圍為[10【點睛】圓錐曲線中最值與范圍問題的常見求法:(1)幾何法:若題目的條件和結論能明顯體現幾何特征和意義,則考慮利用圖形性質來解決;(2)代數法:若題目的條件和結論能體現一種明確的函數關系,則可首先建立目標函數,再求這個函數的最值.在利用代數法解決最值與范圍問題時常從以下幾個方面考慮:①利用判別式來構造不等關系,從而確定參數的取值范圍;②利用隱含或已知的不等關系建立不等式,從而求出參數的取值范圍;③利用基本不等式求出參數的取值范圍;④利用函數的值域的求法,確定參數的取值范圍.22、(1)m(t)=(2)a≤2-2.(3)a≤2-2.【解析】
(1)是研究在動區間上的最值問題,這類問題的研究方法就是通過討論函數的極值點與所研究的區間的大小關系來進行求解.(2)注意到函數h(x)的圖像上任意不同兩點A,B連線的斜率總大于1,等價于h(x1)-h(x2)<x1-x2(x1<x2)恒成立,從而構造函數F(x)=h(x)-x在(0,+∞)上單調遞增,進而等價于F′(x)≥0在(0,+∞)上恒成立來加以研究.(3)用處理恒成立問題來處理有解問題,先分離變量轉化為求對應函數的最值,得到a≤
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 綿陽師范學院《臨床醫學工程技術》2023-2024學年第二學期期末試卷
- 上海市高境第一中學2024-2025學年高三第二次綜合考試試題含解析
- 四川民族學院《機器人學》2023-2024學年第二學期期末試卷
- 許昌學院《醫學科學研究導論》2023-2024學年第二學期期末試卷
- 宣化科技職業學院《新媒體藝術傳播》2023-2024學年第二學期期末試卷
- 四川工業科技學院《結構疲勞與斷裂力學》2023-2024學年第一學期期末試卷
- 邢臺學院《醫學人文導論》2023-2024學年第一學期期末試卷
- 山東省德州市齊河縣一中2025年高三教學測試(二)英語試題含解析
- 嘉應學院《創新方法與實踐(以競賽導向的信息技術創新實踐)》2023-2024學年第二學期期末試卷
- 石家莊二手房房屋買賣合同二零二五年
- 硫磺島戰役要點課件
- 道路勘察設計課程設計度
- 普通話發聲訓練
- 嬰兒痙攣癥的診療
- 世界地理第九章美洲
- 江蘇師范大學成人繼續教育網絡課程《中國近現代史綱要》單元測試及參考答案
- GB/T 7631.2-2003潤滑劑、工業用油和相關產品(L類)的分類第2部分:H組(液壓系統)
- GB/T 6404.1-2005齒輪裝置的驗收規范第1部分:空氣傳播噪聲的試驗規范
- GB/T 21782.5-2010粉末涂料第5部分:粉末空氣混合物流動性的測定
- GB/T 16292-2010醫藥工業潔凈室(區)懸浮粒子的測試方法
- 《網絡傳播學概論》(第四版)-課件
評論
0/150
提交評論