江蘇省興化顧莊學區七校聯考2023-2024學年中考五模數學試題含解析_第1頁
江蘇省興化顧莊學區七校聯考2023-2024學年中考五模數學試題含解析_第2頁
江蘇省興化顧莊學區七校聯考2023-2024學年中考五模數學試題含解析_第3頁
江蘇省興化顧莊學區七校聯考2023-2024學年中考五模數學試題含解析_第4頁
江蘇省興化顧莊學區七校聯考2023-2024學年中考五模數學試題含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

江蘇省興化顧莊學區七校聯考2023-2024學年中考五模數學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.已知拋物線c:y=x2+2x﹣3,將拋物線c平移得到拋物線c′,如果兩條拋物線,關于直線x=1對稱,那么下列說法正確的是()A.將拋物線c沿x軸向右平移個單位得到拋物線c′ B.將拋物線c沿x軸向右平移4個單位得到拋物線c′C.將拋物線c沿x軸向右平移個單位得到拋物線c′ D.將拋物線c沿x軸向右平移6個單位得到拋物線c′2.當a>0時,下列關于冪的運算正確的是()A.a0=1 B.a﹣1=﹣a C.(﹣a)2=﹣a2 D.(a2)3=a53.下列說法錯誤的是()A.的相反數是2 B.3的倒數是C. D.,0,4這三個數中最小的數是04.下列函數中,二次函數是()A.y=﹣4x+5 B.y=x(2x﹣3)C.y=(x+4)2﹣x2 D.y=5.下列計算錯誤的是()A.4x3?2x2=8x5B.a4﹣a3=aC.(﹣x2)5=﹣x10D.(a﹣b)2=a2﹣2ab+b26.如圖,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的頂點P是BC中點,PE,PF分別交AB,AC于點E,F,給出下列四個結論:①△APE≌△CPF;②AE=CF;③△EAF是等腰直角三角形;④S△ABC=2S四邊形AEPF,上述結論正確的有()A.1個 B.2個 C.3個 D.4個7.如圖,等腰△ABC的底邊BC與底邊上的高AD相等,高AD在數軸上,其中點A,D分別對應數軸上的實數﹣2,2,則AC的長度為()A.2 B.4 C.2 D.48.a、b互為相反數,則下列成立的是()A.ab=1 B.a+b=0 C.a=b D.=-19.﹣2×(﹣5)的值是()A.﹣7B.7C.﹣10D.1010.二次函數y=x2﹣6x+m的圖象與x軸有兩個交點,若其中一個交點的坐標為(1,0),則另一個交點的坐標為()A.(﹣1,0) B.(4,0) C.(5,0) D.(﹣6,0)二、填空題(共7小題,每小題3分,滿分21分)11.不等式-2x+3>0的解集是___________________12.如圖,在每個小正方形的邊長為1的網格中,點O,A,B,M均在格點上,P為線段OM上的一個動點.(1)OM的長等于_______;(2)當點P在線段OM上運動,且使PA2+PB2取得最小值時,請借助網格和無刻度的直尺,在給定的網格中畫出點P的位置,并簡要說明你是怎么畫的.13.如圖,O是矩形ABCD的對角線AC的中點,M是AD的中點,若AB=6,AD=8,則四邊形ABOM的周長為_____.14.已知點P(2,3)在一次函數y=2x-m的圖象上,則m=_______.15.2011年,我國汽車銷量超過了18500000輛,這個數據用科學記數法表示為▲輛.16.某物流倉儲公司用如圖A,B兩種型號的機器人搬運物品,已知A型機器人比B型機器人每小時多搬運20kg,A型機器人搬運1000kg所用時間與B型機器人搬運800kg所用時間相等,設B型機器人每小時搬運xkg物品,列出關于x的方程為_____.17.如圖,菱形ABCD的對角線的長分別為2和5,P是對角線AC上任一點(點P不與點A、C重合),且PE∥BC交AB于E,PF∥CD交AD于F,則陰影部分的面積是__________.三、解答題(共7小題,滿分69分)18.(10分)如圖,拋物線與y軸交于A點,過點A的直線與拋物線交于另一點B,過點B作BC⊥x軸,垂足為點C(3,0).(1)求直線AB的函數關系式;(2)動點P在線段OC上從原點出發以每秒一個單位的速度向C移動,過點P作PN⊥x軸,交直線AB于點M,交拋物線于點N.設點P移動的時間為t秒,MN的長度為s個單位,求s與t的函數關系式,并寫出t的取值范圍;(3)設在(2)的條件下(不考慮點P與點O,點C重合的情況),連接CM,BN,當t為何值時,四邊形BCMN為平行四邊形?問對于所求的t值,平行四邊形BCMN是否菱形?請說明理由19.(5分)平面直角坐標系xOy中,橫坐標為a的點A在反比例函數y1═(x>0)的圖象上,點A′與點A關于點O對稱,一次函數y2=mx+n的圖象經過點A′.(1)設a=2,點B(4,2)在函數y1、y2的圖象上.①分別求函數y1、y2的表達式;②直接寫出使y1>y2>0成立的x的范圍;(2)如圖①,設函數y1、y2的圖象相交于點B,點B的橫坐標為3a,△AA'B的面積為16,求k的值;(3)設m=,如圖②,過點A作AD⊥x軸,與函數y2的圖象相交于點D,以AD為一邊向右側作正方形ADEF,試說明函數y2的圖象與線段EF的交點P一定在函數y1的圖象上.20.(8分)如圖,在平行四邊形ABCD中,E,F為BC上兩點,且BE=CF,AF=DE求證:(1)△ABF≌△DCE;四邊形ABCD是矩形.21.(10分)如圖,已知點A,B,C在半徑為4的⊙O上,過點C作⊙O的切線交OA的延長線于點D.(Ⅰ)若∠ABC=29°,求∠D的大小;(Ⅱ)若∠D=30°,∠BAO=15°,作CE⊥AB于點E,求:①BE的長;②四邊形ABCD的面積.22.(10分)計算:(﹣1)2﹣2sin45°+(π﹣2018)0+|﹣2|23.(12分)如圖,在等邊中,,點D是線段BC上的一動點,連接AD,過點D作,垂足為D,交射線AC與點設BD為xcm,CE為ycm.小聰根據學習函數的經驗,對函數y隨自變量x的變化而變化的規律進行了探究.下面是小聰的探究過程,請補充完整:通過取點、畫圖、測量,得到了x與y的幾組值,如下表:012345___00說明:補全表格上相關數值保留一位小數建立平面直角坐標系,描出以補全后的表中各對對應值為坐標的點,畫出該函數的圖象;結合畫出的函數圖象,解決問題:當線段BD是線段CE長的2倍時,BD的長度約為_____cm.24.(14分)如圖,O為直線AB上一點,∠AOC=50°,OD平分∠AOC,∠DOE=90°.寫出圖中小于平角的角.求出∠BOD的度數.小明發現OE平分∠BOC,請你通過計算說明道理.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】∵拋物線C:y=x2+2x﹣3=(x+1)2﹣4,∴拋物線對稱軸為x=﹣1.∴拋物線與y軸的交點為A(0,﹣3).則與A點以對稱軸對稱的點是B(2,﹣3).若將拋物線C平移到C′,并且C,C′關于直線x=1對稱,就是要將B點平移后以對稱軸x=1與A點對稱.則B點平移后坐標應為(4,﹣3),因此將拋物線C向右平移4個單位.故選B.2、A【解析】

直接利用零指數冪的性質以及負指數冪的性質、冪的乘方運算法則分別化簡得出答案.【詳解】A選項:a0=1,正確;B選項:a﹣1=,故此選項錯誤;C選項:(﹣a)2=a2,故此選項錯誤;D選項:(a2)3=a6,故此選項錯誤;故選A.【點睛】考查了零指數冪的性質以及負指數冪的性質、冪的乘方運算,正確掌握相關運算法則是解題關鍵.3、D【解析】試題分析:﹣2的相反數是2,A正確;3的倒數是,B正確;(﹣3)﹣(﹣5)=﹣3+5=2,C正確;﹣11,0,4這三個數中最小的數是﹣11,D錯誤,故選D.考點:1.相反數;2.倒數;3.有理數大小比較;4.有理數的減法.4、B【解析】A.y=-4x+5是一次函數,故此選項錯誤;B.

y=x(2x-3)=2x2-3x,是二次函數,故此選項正確;C.

y=(x+4)2?x2=8x+16,為一次函數,故此選項錯誤;D.

y=是組合函數,故此選項錯誤.故選B.5、B【解析】

根據單項式與單項式相乘,把他們的系數,相同字母分別相乘,對于只在一個單項式里含有的字母,則連同它的指數作為積的一個因式;合并同類項的法則:把同類項的系數相加,所得結果作為系數,字母和字母的指數不變;冪的乘方法則:底數不變,指數相乘;完全平方公式:(a±b)1=a1±1ab+b1.可巧記為:“首平方,末平方,首末兩倍中間放”可得答案.【詳解】A選項:4x3?1x1=8x5,故原題計算正確;

B選項:a4和a3不是同類項,不能合并,故原題計算錯誤;

C選項:(-x1)5=-x10,故原題計算正確;

D選項:(a-b)1=a1-1ab+b1,故原題計算正確;

故選:B.【點睛】考查了整式的乘法,關鍵是掌握整式的乘法各計算法則.6、C【解析】

利用“角邊角”證明△APE和△CPF全等,根據全等三角形的可得AE=CF,再根據等腰直角三角形的定義得到△EFP是等腰直角三角形,根據全等三角形的面積相等可得△APE的面積等于△CPF的面積相等,然后求出四邊形AEPF的面積等于△ABC的面積的一半.【詳解】∵AB=AC,∠BAC=90°,點P是BC的中點,∴AP⊥BC,AP=PC,∠EAP=∠C=45°,∴∠APF+∠CPF=90°,∵∠EPF是直角,∴∠APF+∠APE=90°,∴∠APE=∠CPF,在△APE和△CPF中,,∴△APE≌△CPF(ASA),∴AE=CF,故①②正確;∵△AEP≌△CFP,同理可證△APF≌△BPE,∴△EFP是等腰直角三角形,故③錯誤;∵△APE≌△CPF,∴S△APE=S△CPF,∴四邊形AEPF=S△AEP+S△APF=S△CPF+S△BPE=S△ABC.故④正確,故選C.【點睛】本題考查了全等三角形的判定與性質,等腰直角三角形的判定與性質,根據同角的余角相等求出∠APE=∠CPF,從而得到△APE和△CPF全等是解題的關鍵,也是本題的突破點.7、C【解析】

根據等腰三角形的性質和勾股定理解答即可.【詳解】解:∵點A,D分別對應數軸上的實數﹣2,2,∴AD=4,∵等腰△ABC的底邊BC與底邊上的高AD相等,∴BC=4,∴CD=2,在Rt△ACD中,AC=,故選:C.【點睛】此題考查等腰三角形的性質,注意等腰三角形的三線合一,熟練運用勾股定理.8、B【解析】

依據相反數的概念及性質即可得.【詳解】因為a、b互為相反數,所以a+b=1,故選B.【點睛】此題主要考查相反數的概念及性質.相反數的定義:只有符號不同的兩個數互為相反數,1的相反數是1.9、D【解析】

根據有理數乘法法則計算.【詳解】﹣2×(﹣5)=+(2×5)=10.故選D.【點睛】考查了有理數的乘法法則,(1)兩數相乘,同號得正,異號得負,并把絕對值相乘;(2)任何數同0相乘,都得0;(3)幾個不等于0的數相乘,積的符號由負因數的個數決定,當負因數有奇數個時,積為負;當負因數有偶數個時,積為正;(4)幾個數相乘,有一個因數為0時,積為0.10、C【解析】

根據二次函數解析式求得對稱軸是x=3,由拋物線的對稱性得到答案.【詳解】解:由二次函數得到對稱軸是直線,則拋物線與軸的兩個交點坐標關于直線對稱,∵其中一個交點的坐標為,則另一個交點的坐標為,故選C.【點睛】考查拋物線與x軸的交點坐標,解題關鍵是掌握拋物線的對稱性質.二、填空題(共7小題,每小題3分,滿分21分)11、x<【解析】

根據解一元一次不等式基本步驟:移項、系數化為1可得.【詳解】移項,得:-2x>-3,系數化為1,得:x<,故答案為x<.【點睛】本題主要考查解一元一次不等式的基本能力,嚴格遵循解不等式的基本步驟是關鍵,尤其需要注意不等式兩邊都乘以或除以同一個負數不等號方向要改變.12、(1)4;(2)見解析;【解析】

解:(1)由勾股定理可得OM的長度(2)取格點F,E,連接EF,得到點N,取格點S,T,連接ST,得到點R,連接NR交OM于P,則點P即為所求。【詳解】(1)OM==4;故答案為4.(2)以點O為原點建立直角坐標系,則A(1,0),B(4,0),設P(a,a),(0≤a≤4),∵PA2=(a﹣1)2+a2,PB2=(a﹣4)2+a2,∴PA2+PB2=4(a﹣)2+,∵0≤a≤4,∴當a=時,PA2+PB2取得最小值,綜上,需作出點P滿足線段OP的長=;取格點F,E,連接EF,得到點N,取格點S,T,連接ST,得到點R,連接NR交OM于P,則點P即為所求.【點睛】(1)根據勾股定理即可得到結論;(2)取格點F,E,連接EF,得到點N,取格點S,T,連接ST,得到點R,連接NR即可得到結果.13、1.【解析】

根據矩形的性質,直角三角形斜邊中線性質,三角形中位線性質求出BO、OM、AM即可解決問題.【詳解】解:∵四邊形ABCD是矩形,∴AD=BC=8,AB=CD=6,∠ABC=90°,∴∵AO=OC,∴∵AO=OC,AM=MD=4,∴∴四邊形ABOM的周長為AB+OB+OM+AM=6+5+3+4=1.故答案為:1.【點睛】本題看成矩形的性質、三角形中位線定理、直角三角形斜邊中線性質等知識,解題的關鍵是靈活應用中線知識解決問題,屬于中考常考題型.14、1【解析】

根據待定系數法求得一次函數的解析式,解答即可.【詳解】解:∵一次函數y=2x-m的圖象經過點P(2,3),∴3=4-m,解得m=1,故答案為:1.【點睛】此題主要考查了一次函數圖象上點的坐標特征,關鍵是根據待定系數法求得一次函數的解析式.15、2.85×2.【解析】

根據科學記數法的定義,科學記數法的表示形式為a×20n,其中2≤|a|<20,n為整數,表示時關鍵要正確確定a的值以及n的值.在確定n的值時,看該數是大于或等于2還是小于2.當該數大于或等于2時,n為它的整數位數減2;當該數小于2時,-n為它第一個有效數字前0的個數(含小數點前的2個0).【詳解】解:28500000一共8位,從而28500000=2.85×2.16、【解析】

設B型機器人每小時搬運x

kg物品,則A型機器人每小時搬運(x+20)kg物品,根據“A型機器人搬運1000kg所用時間與B型機器人搬運800kg所用時間相等”可列方程.【詳解】設B型機器人每小時搬運x

kg物品,則A型機器人每小時搬運(x+20)kg物品,根據題意可得,故答案為.【點睛】本題考查了由實際問題抽象出分式方程,解題的關鍵是根據數量關系列出關于x的分式方程.本題屬于基礎題,難度不大,解決該題型題目時,根據數量關系列出方程是關鍵.17、【解析】

根據題意可得陰影部分的面積等于△ABC的面積,因為△ABC的面積是菱形面積的一半,根據已知可求得菱形的面積則不難求得陰影部分的面積.【詳解】設AP,EF交于O點,∵四邊形ABCD為菱形,∴BC∥AD,AB∥CD.∵PE∥BC,PF∥CD,∴PE∥AF,PF∥AE.∴四邊形AEFP是平行四邊形.∴S△POF=S△AOE.即陰影部分的面積等于△ABC的面積.∵△ABC的面積等于菱形ABCD的面積的一半,菱形ABCD的面積=ACBD=5,∴圖中陰影部分的面積為5÷2=.三、解答題(共7小題,滿分69分)18、(1);(2)(0≤t≤3);(3)t=1或2時;四邊形BCMN為平行四邊形;t=1時,平行四邊形BCMN是菱形,t=2時,平行四邊形BCMN不是菱形,理由見解析.【解析】

(1)由A、B在拋物線上,可求出A、B點的坐標,從而用待定系數法求出直線AB的函數關系式.(2)用t表示P、M、N的坐標,由等式得到函數關系式.(3)由平行四邊形對邊相等的性質得到等式,求出t.再討論鄰邊是否相等.【詳解】解:(1)x=0時,y=1,∴點A的坐標為:(0,1),∵BC⊥x軸,垂足為點C(3,0),∴點B的橫坐標為3,當x=3時,y=,∴點B的坐標為(3,),設直線AB的函數關系式為y=kx+b,,解得,,則直線AB的函數關系式(2)當x=t時,y=t+1,∴點M的坐標為(t,t+1),當x=t時,∴點N的坐標為(0≤t≤3);(3)若四邊形BCMN為平行四邊形,則有MN=BC,

∴,解得t1=1,t2=2,∴當t=1或2時,四邊形BCMN為平行四邊形,

①當t=1時,MP=,PC=2,∴MC==MN,此時四邊形BCMN為菱形,②當t=2時,MP=2,PC=1,∴MC=≠MN,此時四邊形BCMN不是菱形.【點睛】本題考查的是二次函數的性質、待定系數法求函數解析式、菱形的判定,正確求出二次函數的解析式、利用配方法把一般式化為頂點式、求出函數的最值是解題的關鍵,注意菱形的判定定理的靈活運用.19、(1)y1=,y2=x﹣2;②2<x<4;(2)k=6;(3)證明見解析.【解析】分析:(1)由已知代入點坐標即可;(2)面積問題可以轉化為△AOB面積,用a、k表示面積問題可解;(3)設出點A、A′坐標,依次表示AD、AF及點P坐標.詳解:(1)①由已知,點B(4,2)在y1═(x>0)的圖象上∴k=8∴y1=∵a=2∴點A坐標為(2,4),A′坐標為(﹣2,﹣4)把B(4,2),A(﹣2,﹣4)代入y2=mx+n得,,解得,∴y2=x﹣2;②當y1>y2>0時,y1=圖象在y2=x﹣2圖象上方,且兩函數圖象在x軸上方,∴由圖象得:2<x<4;(2)分別過點A、B作AC⊥x軸于點C,BD⊥x軸于點D,連BO,∵O為AA′中點,S△AOB=S△AOA′=8∵點A、B在雙曲線上∴S△AOC=S△BOD∴S△AOB=S四邊形ACDB=8由已知點A、B坐標都表示為(a,)(3a,)∴,解得k=6;(3)由已知A(a,),則A′為(﹣a,﹣).把A′代入到y=,得:﹣,∴n=,∴A′B解析式為y=﹣.當x=a時,點D縱坐標為,∴AD=∵AD=AF,∴點F和點P橫坐標為,∴點P縱坐標為.∴點P在y1═(x>0)的圖象上.點睛:本題綜合考查反比例函數、一次函數圖象及其性質,解答過程中,涉及到了面積轉化方法、待定系數法和數形結合思想.20、(1)見解析;(2)見解析.【解析】

(1)根據等量代換得到BE=CF,根據平行四邊形的性質得AB=DC.利用“SSS”得△ABF≌△DCE.(2)平行四邊形的性質得到兩邊平行,從而∠B+∠C=180°.利用全等得∠B=∠C,從而得到一個直角,問題得證.【詳解】(1)∵BE=CF,BF=BE+EF,CE=CF+EF,∴BF=CE.∵四邊形ABCD是平行四邊形,∴AB=DC.在△ABF和△DCE中,∵AB=DC,BF=CE,AF=DE,∴△ABF≌△DCE.(2)∵△ABF≌△DCE,∴∠B=∠C.∵四邊形ABCD是平行四邊形,∴AB∥CD.∴∠B+∠C=180°.∴∠B=∠C=90°.∴平行四邊形ABCD是矩形.21、(1)∠D=32°;(2)①BE=;②【解析】

(Ⅰ)連接OC,CD為切線,根據切線的性質可得∠OCD=90°,根據圓周角定理可得∠AOC=2∠ABC=29°×2=58°,根據直角三角形的性質可得∠D的大小.(Ⅱ)①根據∠D=30°,得到∠DOC=60°,根據∠BAO=15°,可以得出∠AOB=150°,進而證明△OBC為等腰直角三角形,根據等腰直角三角形的性質得出根據圓周角定理得出根據含角的直角三角形的性質即可求出BE的長;②根據四邊形ABCD的面積=S△OBC+S△OCD﹣S△OAB進行計算即可.【詳解】(Ⅰ)連接OC,∵CD為切線,∴OC⊥CD,∴∠OCD=90°,∵∠AOC=2∠ABC=29°×2=58°,∴∠D=90°﹣58°=32°;(Ⅱ)①連接OB,在Rt△OCD中,∵∠D=30°,∴∠DOC=60°,∵∠BAO=15°,∴∠OBA=15°,∴∠AOB=150°,∴∠OBC=150°﹣60°=90°,∴△OBC為等腰直角三角形,∴∵在Rt△CBE中,∴②作BH⊥OA于H,如圖,∵∠BOH=180°﹣∠AOB=30°,∴∴四邊形ABC

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論