




文檔簡介
河南省八市2024年高三下期末數學試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,,分別為內角,,的對邊,,,的面積為,則()A. B.4 C.5 D.2.設為等差數列的前項和,若,則A. B.C. D.3.在中,角、、所對的邊分別為、、,若,則()A. B. C. D.4.已知函數且,則實數的取值范圍是()A. B. C. D.5.中國古典樂器一般按“八音”分類.這是我國最早按樂器的制造材料來對樂器進行分類的方法,最先見于《周禮·春官·大師》,分為“金、石、土、革、絲、木、匏(páo)、竹”八音,其中“金、石、木、革”為打擊樂器,“土、匏、竹”為吹奏樂器,“絲”為彈撥樂器.現從“八音”中任取不同的“兩音”,則含有打擊樂器的概率為()A. B. C. D.6.如圖,在平行四邊形中,為對角線的交點,點為平行四邊形外一點,且,,則()A. B.C. D.7.等腰直角三角形BCD與等邊三角形ABD中,,,現將沿BD折起,則當直線AD與平面BCD所成角為時,直線AC與平面ABD所成角的正弦值為()A. B. C. D.8.已知復數z,則復數z的虛部為()A. B. C.i D.i9.若復數是純虛數,則實數的值為()A.或 B. C. D.或10.總體由編號為01,02,...,39,40的40個個體組成.利用下面的隨機數表選取5個個體,選取方法是從隨機數表(如表)第1行的第4列和第5列數字開始由左到右依次選取兩個數字,則選出來的第5個個體的編號為()A.23 B.21 C.35 D.3211.設函數,當時,,則()A. B. C.1 D.12.已知向量,,當時,()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若,i為虛數單位,則正實數的值為______.14.已知函數為奇函數,,且與圖象的交點為,,…,,則______.15.的展開式中,的系數為____________.16.在疫情防控過程中,某醫院一次性收治患者127人.在醫護人員的精心治療下,第15天開始有患者治愈出院,并且恰有其中的1名患者治愈出院.如果從第16天開始,每天出院的人數是前一天出院人數的2倍,那么第19天治愈出院患者的人數為_______________,第_______________天該醫院本次收治的所有患者能全部治愈出院.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓C的中心在坐標原點,其短半軸長為1,一個焦點坐標為,點在橢圓上,點在直線上,且.(1)證明:直線與圓相切;(2)設與橢圓的另一個交點為,當的面積最小時,求的長.18.(12分)如圖,在三棱柱中,是邊長為2的等邊三角形,,,.(1)證明:平面平面;(2),分別是,的中點,是線段上的動點,若二面角的平面角的大小為,試確定點的位置.19.(12分)已知數列的前n項和為,且n、、成等差數列,.(1)證明數列是等比數列,并求數列的通項公式;(2)若數列中去掉數列的項后余下的項按原順序組成數列,求的值.20.(12分)如圖,在底面邊長為1,側棱長為2的正四棱柱中,P是側棱上的一點,.(1)若,求直線AP與平面所成角;(2)在線段上是否存在一個定點Q,使得對任意的實數m,都有,并證明你的結論.21.(12分)2019年底,北京2022年冬奧組委會啟動志愿者全球招募,僅一個月內報名人數便突破60萬,其中青年學生約有50萬人.現從這50萬青年學生志愿者中,按男女分層抽樣隨機選取20人進行英語水平測試,所得成績(單位:分)統計結果用莖葉圖記錄如下:(Ⅰ)試估計在這50萬青年學生志愿者中,英語測試成績在80分以上的女生人數;(Ⅱ)從選出的8名男生中隨機抽取2人,記其中測試成績在70分以上的人數為X,求的分布列和數學期望;(Ⅲ)為便于聯絡,現將所有的青年學生志愿者隨機分成若干組(每組人數不少于5000),并在每組中隨機選取個人作為聯絡員,要求每組的聯絡員中至少有1人的英語測試成績在70分以上的概率大于90%.根據圖表中數據,以頻率作為概率,給出的最小值.(結論不要求證明)22.(10分)已知函數,.(Ⅰ)求的最小正周期;(Ⅱ)求在上的最小值和最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
由正弦定理可知,從而可求出.通過可求出,結合余弦定理即可求出的值.【詳解】解:,即,即.,則.,解得.,故選:D.【點睛】本題考查了正弦定理,考查了余弦定理,考查了三角形的面積公式,考查同角三角函數的基本關系.本題的關鍵是通過正弦定理結合已知條件,得到角的正弦值余弦值.2、C【解析】
根據等差數列的性質可得,即,所以,故選C.3、D【解析】
利用余弦定理角化邊整理可得結果.【詳解】由余弦定理得:,整理可得:,.故選:.【點睛】本題考查余弦定理邊角互化的應用,屬于基礎題.4、B【解析】
構造函數,判斷出的單調性和奇偶性,由此求得不等式的解集.【詳解】構造函數,由解得,所以的定義域為,且,所以為奇函數,而,所以在定義域上為增函數,且.由得,即,所以.故選:B【點睛】本小題主要考查利用函數的單調性和奇偶性解不等式,屬于中檔題.5、B【解析】
分別求得所有基本事件個數和滿足題意的基本事件個數,根據古典概型概率公式可求得結果.【詳解】從“八音”中任取不同的“兩音”共有種取法;“兩音”中含有打擊樂器的取法共有種取法;所求概率.故選:.【點睛】本題考查古典概型概率問題的求解,關鍵是能夠利用組合的知識求得基本事件總數和滿足題意的基本事件個數.6、D【解析】
連接,根據題目,證明出四邊形為平行四邊形,然后,利用向量的線性運算即可求出答案【詳解】連接,由,知,四邊形為平行四邊形,可得四邊形為平行四邊形,所以.【點睛】本題考查向量的線性運算問題,屬于基礎題7、A【解析】
設E為BD中點,連接AE、CE,過A作于點O,連接DO,得到即為直線AD與平面BCD所成角的平面角,根據題中條件求得相應的量,分析得到即為直線AC與平面ABD所成角,進而求得其正弦值,得到結果.【詳解】設E為BD中點,連接AE、CE,由題可知,,所以平面,過A作于點O,連接DO,則平面,所以即為直線AD與平面BCD所成角的平面角,所以,可得,在中可得,又,即點O與點C重合,此時有平面,過C作與點F,又,所以,所以平面,從而角即為直線AC與平面ABD所成角,,故選:A.【點睛】該題考查的是有關平面圖形翻折問題,涉及到的知識點有線面角的正弦值的求解,在解題的過程中,注意空間角的平面角的定義,屬于中檔題目.8、B【解析】
利用復數的運算法則、虛部的定義即可得出【詳解】,則復數z的虛部為.故選:B.【點睛】本題考查了復數的運算法則、虛部的定義,考查了推理能力與計算能力,屬于基礎題.9、C【解析】試題分析:因為復數是純虛數,所以且,因此注意不要忽視虛部不為零這一隱含條件.考點:純虛數10、B【解析】
根據隨機數表法的抽樣方法,確定選出來的第5個個體的編號.【詳解】隨機數表第1行的第4列和第5列數字為4和6,所以從這兩個數字開始,由左向右依次選取兩個數字如下46,64,42,16,60,65,80,56,26,16,55,43,50,24,23,54,89,63,21,…其中落在編號01,02,…,39,40內的有:16,26,16,24,23,21,…依次不重復的第5個編號為21.故選:B【點睛】本小題主要考查隨機數表法進行抽樣,屬于基礎題.11、A【解析】
由降冪公式,兩角和的正弦公式化函數為一個角的一個三角函數形式,然后由正弦函數性質求得參數值.【詳解】,時,,,∴,由題意,∴.故選:A.【點睛】本題考查二倍角公式,考查兩角和的正弦公式,考查正弦函數性質,掌握正弦函數性質是解題關鍵.12、A【解析】
根據向量的坐標運算,求出,,即可求解.【詳解】,.故選:A.【點睛】本題考查向量的坐標運算、誘導公式、二倍角公式、同角間的三角函數關系,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
利用復數模的運算性質,即可得答案.【詳解】由已知可得:,,解得.故答案為:.【點睛】本題考查復數模的運算性質,考查推理能力與計算能力,屬于基礎題.14、18【解析】
由題意得函數f(x)與g(x)的圖像都關于點對稱,結合函數的對稱性進行求解即可.【詳解】函數為奇函數,函數關于點對稱,,函數關于點對稱,所以兩個函數圖象的交點也關于點(1,2)對稱,與圖像的交點為,,…,,兩兩關于點對稱,.故答案為:18【點睛】本題考查了函數對稱性的應用,結合函數奇偶性以及分式函數的性質求出函數的對稱性是解決本題的關鍵,屬于中檔題.15、16【解析】
要得到的系數,只要求出二項式中的系數減去的系數的2倍即可【詳解】的系數為.故答案為:16【點睛】此題考查二項式的系數,屬于基礎題.16、161【解析】
由題意可知出院人數構成一個首項為1,公比為2的等比數列,由此可求結果.【詳解】某醫院一次性收治患者127人.第15天開始有患者治愈出院,并且恰有其中的1名患者治愈出院.且從第16天開始,每天出院的人數是前一天出院人數的2倍,從第15天開始,每天出院人數構成以1為首項,2為公比的等比數列,則第19天治愈出院患者的人數為,,解得,第天該醫院本次收治的所有患者能全部治愈出院.故答案為:16,1.【點睛】本題主要考查了等比數列在實際問題中的應用,考查等比數列的性質等基礎知識,考查推理能力與計算能力,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2).【解析】
(1)分斜率為0,斜率不存在,斜率不為0三種情況討論,設的方程為,可求解得到,,可得到的距離為1,即得證;(2)表示的面積為,利用均值不等式,即得解.【詳解】(1)由題意,橢圓的焦點在x軸上,且,所以.所以橢圓的方程為.由點在直線上,且知的斜率必定存在,當的斜率為0時,,,于是,到的距離為1,直線與圓相切.當的斜率不為0時,設的方程為,與聯立得,所以,,從而.而,故的方程為,而在上,故,從而,于是.此時,到的距離為1,直線與圓相切.綜上,直線與圓相切.(2)由(1)知,的面積為,上式中,當且僅當等號成立,所以面積的最小值為1.此時,點在橢圓的長軸端點,為.不妨設為長軸左端點,則直線的方程為,代入橢圓的方程解得,即,,所以.【點睛】本題考查了直線和橢圓綜合,考查了直線和圓的位置關系判斷,面積的最值問題,考查了學生綜合分析,數學運算能力,屬于較難題.18、(1)證明見解析;(2)為線段上靠近點的四等分點,且坐標為【解析】
(1)先通過線面垂直的判定定理證明平面,再根據面面垂直的判定定理即可證明;(2)分析位置關系并建立空間直角坐標系,根據二面角的余弦值與平面法向量夾角的余弦值之間的關系,即可計算出的坐標從而位置可確定.【詳解】(1)證明:因為,,,所以,即.又因為,,所以,,所以平面.因為平面,所以平面平面.(2)解:連接,因為,是的中點,所以.由(1)知,平面平面,所以平面.以為原點建立如圖所示的空間直角坐標系,則平面的一個法向量是,,,.設,,,,代入上式得,,,所以.設平面的一個法向量為,,,由,得.令,得.因為二面角的平面角的大小為,所以,即,解得.所以點為線段上靠近點的四等分點,且坐標為.【點睛】本題考查面面垂直的證明以及利用向量法求解二面角有關的問題,難度一般.(1)證明面面垂直,可通過先證明線面垂直,再證明面面垂直;(2)二面角的余弦值不一定等于平面法向量夾角的余弦值,要注意結合圖形分析.19、(1)證明見解析,;(2)11202.【解析】
(1)由n,,成等差數列,可得,,兩式相減,由等比數列的定義可得是等比數列,可求數列的通項公式;(2)由(1)中的可求出,根據和求出數列,中的公共項,分組求和,結合等比數列和等差數列的求和公式,可得答案.【詳解】(1)證明:因為n,,成等差數列,所以,①所以.②①-②,得,所以.又當時,,所以,所以,故數列是首項為2,公比為2的等比數列,所以,即.(2)根據(1)求解知,,,所以,所以數列是以1為首項,2為公差的等差數列.又因為,,,,,,,,,,,所以.【點睛】本題考查等比數列的定義,考查分組求和,屬于中檔題.20、(1);(2)存在,Q為線段中點【解析】
解法一:(1)作出平面與平面的交線,可證平面,計算,,得出,從而得出的大小;(2)證明平面,故而可得當Q為線段的中點時.解法二,以為原點,以為建立空間直角坐標系:(1)由,利用空間向量的數量積可求線面角;(2)設上存在一定點Q,設此點的橫坐標為,可得,由向量垂直,數量積等于零即可求解.【詳解】(1)解法一:連接交于,設與平面的公共點為,連接,則平面平面,四邊形是正方形,,平面,平面,,又,平面,為直線AP與平面所成角,平面,平面,平面平面,,又為的中點,,,,直線AP與平面所成角為.(2)四邊形正方形,,平面,平面,,又,平面,又平面,,當Q為線段中點時,對于任意的實數,都有.解法二:(1)建立如圖所示的空間直角坐標系,則,,所以,,,又由,,則為平面的一個法向量,設直線AP與平面所成角為,則,故當時,直線AP與平面所成角為.(2)若在上存在一定點Q,設此點的橫坐標為,則,,依題意
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 代駕加盟合同樣本
- 有限公司增資擴股協議
- 氣體摩爾體積-教案
- 個人供電合同標準文本
- 幼兒園勤儉節約的教案
- 產品授權協議合同標準文本
- 實驗學校第二屆科技節機器人比賽方案
- 12施工合同標準文本
- 請講普通話寫好規范字主題班會教案
- 公司食堂肉菜配送合同協議范本模板
- 改革開放課件教案
- 自行車采購合同模板
- 《美的集團股權激勵實施過程及實施效果分析案例(論文)》14000字
- 2024年四川省南充市中考生物試卷真題(含官方答案及解析)
- DL-T5501-2015凍土地區架空輸電線路基礎設計技術規程
- 雞毛信的故事-紅色故事課件
- 川教版信息技術六年級下冊全冊教案【新教材】
- 中學生學習動機量表(MSMT)
- 中級考試外科基礎題
- 2024高三一模寶山作文題解析及范文(用怎樣的目光看待事物)
- 《紙質文物修復與保護》課件-31古籍書冊結構
評論
0/150
提交評論