




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
云南省大理州南澗縣民族中學2025屆高考全國統考預測密卷數學試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數是偶函數,當時,函數單調遞減,設,,,則的大小關系為()A. B. C. D.2.函數y=sin2x的圖象可能是A. B.C. D.3.若函數()的圖象過點,則()A.函數的值域是 B.點是的一個對稱中心C.函數的最小正周期是 D.直線是的一條對稱軸4.已知向量與向量平行,,且,則()A. B.C. D.5.某幾何體的三視圖如右圖所示,則該幾何體的外接球表面積為()A. B.C. D.6.函數圖象的大致形狀是()A. B.C. D.7.已知函數是定義在上的偶函數,且在上單調遞增,則()A. B.C. D.8.已知冪函數的圖象過點,且,,,則,,的大小關系為()A. B. C. D.9.如圖所示程序框圖,若判斷框內為“”,則輸出()A.2 B.10 C.34 D.9810.設點,P為曲線上動點,若點A,P間距離的最小值為,則實數t的值為()A. B. C. D.11.如圖,在中,點,分別為,的中點,若,,且滿足,則等于()A.2 B. C. D.12.函數,,則“的圖象關于軸對稱”是“是奇函數”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.若函數()的圖象與直線相切,則______.14.復數(其中i為虛數單位)的共軛復數為________.15.已知非零向量,滿足,且,則與的夾角為____________.16.已知函數為上的奇函數,滿足.則不等式的解集為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系中,曲線:(為參數,),曲線:(為參數).若曲線和相切.(1)在以為極點,軸非負半軸為極軸的極坐標系中,求曲線的普通方程;(2)若點,為曲線上兩動點,且滿足,求面積的最大值.18.(12分)設為拋物線的焦點,,為拋物線上的兩個動點,為坐標原點.(Ⅰ)若點在線段上,求的最小值;(Ⅱ)當時,求點縱坐標的取值范圍.19.(12分)已知數列和滿足,,,,.(Ⅰ)求與;(Ⅱ)記數列的前項和為,且,若對,恒成立,求正整數的值.20.(12分)如圖,已知四棱錐,底面為邊長為2的菱形,平面,,是的中點,.(Ⅰ)證明:;(Ⅱ)若為上的動點,求與平面所成最大角的正切值.21.(12分)已知函數.(1)求函數的單調遞增區間;(2)在△ABC中,角A,B,C所對的邊分別是a,b,c,若滿足,,,求.22.(10分)已知函數(1)若對任意恒成立,求實數的取值范圍;(2)求證:
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
根據圖象關于軸對稱可知關于對稱,從而得到在上單調遞增且;再根據自變量的大小關系得到函數值的大小關系.【詳解】為偶函數圖象關于軸對稱圖象關于對稱時,單調遞減時,單調遞增又且,即本題正確選項:【點睛】本題考查利用函數奇偶性、對稱性和單調性比較函數值的大小關系問題,關鍵是能夠通過奇偶性和對稱性得到函數的單調性,通過自變量的大小關系求得結果.2、D【解析】分析:先研究函數的奇偶性,再研究函數在上的符號,即可判斷選擇.詳解:令,因為,所以為奇函數,排除選項A,B;因為時,,所以排除選項C,選D.點睛:有關函數圖象的識別問題的常見題型及解題思路:(1)由函數的定義域,判斷圖象的左、右位置,由函數的值域,判斷圖象的上、下位置;(2)由函數的單調性,判斷圖象的變化趨勢;(3)由函數的奇偶性,判斷圖象的對稱性;(4)由函數的周期性,判斷圖象的循環往復.3、A【解析】
根據函數的圖像過點,求出,可得,再利用余弦函數的圖像與性質,得出結論.【詳解】由函數()的圖象過點,可得,即,,,故,對于A,由,則,故A正確;對于B,當時,,故B錯誤;對于C,,故C錯誤;對于D,當時,,故D錯誤;故選:A【點睛】本題主要考查了二倍角的余弦公式、三角函數的圖像與性質,需熟記性質與公式,屬于基礎題.4、B【解析】
設,根據題意得出關于、的方程組,解出這兩個未知數的值,即可得出向量的坐標.【詳解】設,且,,由得,即,①,由,②,所以,解得,因此,.故選:B.【點睛】本題考查向量坐標的求解,涉及共線向量的坐標表示和向量數量積的坐標運算,考查計算能力,屬于中等題.5、A【解析】
由三視圖知:幾何體為三棱錐,且三棱錐的一條側棱垂直于底面,結合直觀圖判斷外接球球心的位置,求出半徑,代入求得表面積公式計算.【詳解】由三視圖知:幾何體為三棱錐,且三棱錐的一條側棱垂直于底面,高為2,底面為等腰直角三角形,斜邊長為,如圖:的外接圓的圓心為斜邊的中點,,且平面,,的中點為外接球的球心,半徑,外接球表面積.故選:A【點睛】本題考查了由三視圖求幾何體的外接球的表面積,根據三視圖判斷幾何體的結構特征,利用幾何體的結構特征與數據求得外接球的半徑是解答本題的關鍵.6、B【解析】
判斷函數的奇偶性,可排除A、C,再判斷函數在區間上函數值與的大小,即可得出答案.【詳解】解:因為,所以,所以函數是奇函數,可排除A、C;又當,,可排除D;故選:B.【點睛】本題考查函數表達式判斷函數圖像,屬于中檔題.7、C【解析】
根據題意,由函數的奇偶性可得,,又由,結合函數的單調性分析可得答案.【詳解】根據題意,函數是定義在上的偶函數,則,,有,又由在上單調遞增,則有,故選C.【點睛】本題主要考查函數的奇偶性與單調性的綜合應用,注意函數奇偶性的應用,屬于基礎題.8、A【解析】
根據題意求得參數,根據對數的運算性質,以及對數函數的單調性即可判斷.【詳解】依題意,得,故,故,,,則.故選:A.【點睛】本題考查利用指數函數和對數函數的單調性比較大小,考查推理論證能力,屬基礎題.9、C【解析】
由題意,逐步分析循環中各變量的值的變化情況,即可得解.【詳解】由題意運行程序可得:,,,;,,,;,,,;不成立,此時輸出.故選:C.【點睛】本題考查了程序框圖,只需在理解程序框圖的前提下細心計算即可,屬于基礎題.10、C【解析】
設,求,作為的函數,其最小值是6,利用導數知識求的最小值.【詳解】設,則,記,,易知是增函數,且的值域是,∴的唯一解,且時,,時,,即,由題意,而,,∴,解得,.∴.故選:C.【點睛】本題考查導數的應用,考查用導數求最值.解題時對和的關系的處理是解題關鍵.11、D【解析】
選取為基底,其他向量都用基底表示后進行運算.【詳解】由題意是的重心,,∴,,∴,故選:D.【點睛】本題考查向量的數量積,解題關鍵是選取兩個不共線向量作為基底,其他向量都用基底表示參與運算,這樣做目標明確,易于操作.12、B【解析】
根據函數奇偶性的性質,結合充分條件和必要條件的定義進行判斷即可.【詳解】設,若函數是上的奇函數,則,所以,函數的圖象關于軸對稱.所以,“是奇函數”“的圖象關于軸對稱”;若函數是上的偶函數,則,所以,函數的圖象關于軸對稱.所以,“的圖象關于軸對稱”“是奇函數”.因此,“的圖象關于軸對稱”是“是奇函數”的必要不充分條件.故選:B.【點睛】本題主要考查充分條件和必要條件的判斷,結合函數奇偶性的性質判斷是解決本題的關鍵,考查推理能力,屬于中等題.二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】
設切點由已知可得,即可解得所求.【詳解】設,因為,所以,即,又,.所以,即,.故答案為:.【點睛】本題考查導數的幾何意義,考查函數與方程思想、轉化與化歸思想,考查邏輯推理能力、運算求解能力,難度較易.14、【解析】
利用復數的乘法運算求出,再利用共軛復數的概念即可求解.【詳解】由,則.故答案為:【點睛】本題考查了復數的四則運算以及共軛復數的概念,屬于基礎題.15、(或寫成)【解析】
設與的夾角為,通過,可得,化簡整理可求出,從而得到答案.【詳解】設與的夾角為可得,故,將代入可得得到,于是與的夾角為.故答案為:.【點睛】本題主要考查向量的數量積運算,向量垂直轉化為數量積為0是解決本題的關鍵,意在考查學生的轉化能力,分析能力及計算能力.16、【解析】
構造函數,利用導數判斷出函數的單調性,再將所求不等式變形為,利用函數的單調性即可得解.【詳解】設,則,設,則.當時,,此時函數單調遞減;當時,,此時函數單調遞增.所以,函數在處取得極小值,也是最小值,即,,,,即,所以,函數在上為增函數,函數為上的奇函數,則,,則不等式等價于,又,解得.因此,不等式的解集為.故答案為:.【點睛】本題主要考查不等式的求解,構造函數,求函數的導數,利用導數和函數單調性之間的關系是解決本題的關鍵.綜合性較強.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】
(1)消去參數,將圓的參數方程,轉化為普通方程,再由圓心到直線的距離等于半徑,可求得圓的普通方程,最后利用求得圓的極坐標方程.(2)利用圓的參數方程以及輔助角公式,由此求得的面積的表達式,再由三角函數最值的求法,求得三角形面積的最大值.【詳解】(1)由題意得:,:因為曲線和相切,所以,即:;(2)設,所以所以當時,面積最大值為【點睛】本小題主要考查參數方程轉化為普通方程,考查直角坐標方程轉化為極坐標方程,考查利用參數的方法求三角形面積的最值,屬于中檔題.18、(Ⅰ)(Ⅱ)【解析】
(1)由拋物線的性質,當軸時,最小;(2)設點,,分別代入拋物線方程和得到三個方程,消去,得到關于的一元二次方程,利用判別式即可求出的范圍.【詳解】解:(1)由拋物線的標準方程,,根據拋物線的性質,當軸時,最小,最小值為,即為4.(2)由題意,設點,,其中,.則,①,②因為,,,所以.③由①②③,得,由,且,得,解不等式,得點縱坐標的范圍為.【點睛】本題主要考查拋物線的方程和性質和二次方程的解的問題,考查運算能力,此類問題能較好的考查考生的邏輯思維能力、運算求解能力、分析問題解決問題的能力等,易錯點是復雜式子的變形能力不足,導致錯解.19、(Ⅰ),;(Ⅱ)1【解析】
(Ⅰ)易得為等比數列,再利用前項和與通項的關系求解的通項公式即可.(Ⅱ)由題可知要求的最小值,再分析的正負即可得隨的增大而增大再判定可知即可.【詳解】(Ⅰ)因為,故是以為首項,2為公比的等比數列,故.又當時,,解得.當時,…①…②①-②有,即.當時也滿足.故為常數列,所以.即.故,(Ⅱ)因為對,恒成立.故只需求的最小值即可.設,則,又,又當時,時.當時,因為.故.綜上可知.故隨著的增大而增大,故,故【點睛】本題主要考查了根據數列的遞推公式求解通項公式的方法,同時也考查了根據數列的增減性判斷最值的問題,需要根據題意求解的通項,并根據二項式定理分析其正負,從而得到最小項.屬于難題.20、(Ⅰ)見解析;(Ⅱ).【解析】試題分析:(Ⅰ)由底面為邊長為2的菱形,平面,,易證平面,可得;(Ⅱ)連結,由(Ⅰ)易知為與平面所成的角,在中,可求得.試題解析:(Ⅰ)∵四邊形為菱形,且,∴為正三角形,又為中點,∴;又,∴,∵平面,又平面,∴,∴平面,又平面,∴;(Ⅱ)連結,由(Ⅰ)知平面,∴為與平面所成的角,在中,,最大當且僅當最短,即時最大,依題意,此時,在中,,∴,,∴與平面所成最大角的正切值為.考點:1.線線垂直證明;2.求線面角.21、(1);(2)【解析】
(1)化簡得到,取,解得答案.(2),解得,根據余弦定理得到,再用一次余弦定理解得答案.【詳解】(1).取,解得.(2),因為,故,.根據余弦定理:,..【點睛】本題考查了三角恒等變換,三角函數單調性,余弦定理,意在考查學生對于三角函數知識的綜
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 電信行業財務分析與應用試題考核試卷
- 纖維板生產中的熱壓工藝參數對性能影響研究考核試卷
- 油墨及類似產品消費趨勢分析考核試卷
- 食管癌護理查房 2
- 山東省2024屆高三數學下學期6月考前適應性測試
- 福建省廈門市第一中學2024?2025學年高一下學期3月適應性訓練 數學試題(含解析)
- 綿陽飛行職業學院《反應工程概論》2023-2024學年第二學期期末試卷
- 山東濰坊高新技術產業開發區實驗學校2025屆五下數學期末學業質量監測模擬試題含答案
- 沈陽城市學院《事故調查與模擬分析技術》2023-2024學年第二學期期末試卷
- 泉州信息工程學院《魏晉玄學》2023-2024學年第一學期期末試卷
- 舒適化醫療麻醉
- 農村民兵連指導員述職報告范本
- 全國各氣象臺站區站號及經緯度
- 《智能制造技術與應用》試題及答案
- NX_Nastran_超單元指南_cn
- 軟件系統平臺對接接口方案計劃
- 瘧原蟲生活史
- 機組DEH、ETS、FSSS、MEH、METS系統邏輯
- 古代退休辭官文化常識1
- 創新社會組織管理發揮“樞紐型”社會組織作用的指導意見
- 工程機械租賃服務方案及保障措施 (1)
評論
0/150
提交評論