




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
湖南省長沙市長郡湘府中學2025屆高二上數學期末復習檢測模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.曲線在點處的切線方程為()A. B.C. D.2.某中學的校友會為感謝學校的教育之恩,準備在學校修建一座四角攢尖的思源亭如圖它的上半部分的輪廓可近似看作一個正四棱錐,已知此正四棱錐的側面與底面所成的二面角為30°,側棱長為米,則以下說法不正確()A.底面邊長為6米 B.體積為立方米C.側面積為平方米 D.側棱與底面所成角的正弦值為3.據記載,歐拉公式是由瑞士著名數學家歐拉發現的,該公式被譽為“數學中的天橋”特別是當時,得到一個令人著迷的優美恒等式,將數學中五個重要的數(自然對數的底,圓周率,虛數單位,自然數的單位和零元)聯系到了一起,有些數學家評價它是“最完美的數學公式”.根據歐拉公式,復數的虛部()A. B.C. D.4.數列是等比數列,是其前n項之積,若,則的值是()A.1024 B.256C.2 D.5125.在棱長為1的正方體中,是線段上一個動點,則下列結論正確的有()A.不存在點使得異面直線與所成角為90°B.存在點使得異面直線與所成角為45°C.存在點使得二面角的平面角為45°D.當時,平面截正方體所得的截面面積為6.如圖,在正方體中,是側面內一動點,若到直線與直線的距離相等,則動點的軌跡所在的曲線是()A.直線 B.圓C.雙曲線 D.拋物線7.正方體的棱長為2,E,F,G分別為,AB,的中點,則直線ED與FG所成角的余弦值為()A. B.C. D.8.入冬以來,梁老師準備了4個不同的烤火爐,全部分發給樓的三個辦公室(每層樓各有一個辦公室).1,2樓的老師反映辦公室有點冷,所以1,2樓的每個辦公室至少需要1個烤火隊,3樓老師表示不要也可以.則梁老師共有多少種分發烤火爐的方法()A.108 B.36C.50 D.869.已知點在拋物線:上,則的焦點到其準線的距離為()A. B.C.1 D.210.雙曲線型自然通風塔外形是雙曲線的一部分繞其虛軸旋轉所成的曲面,如圖所示,它的最小半徑為米,上口半徑為米,下口半徑為米,高為24米,則該雙曲線的離心率為()A.2 B.C. D.11.如圖,空間四邊形中,,,,且,,則()A. B.C. D.12.若直線與直線垂直,則()A.6 B.4C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若雙曲線的漸近線為,則其離心率的值為_______.14.寫出直線一個方向向量______15.如圖是一個無蓋的正方體盒子展開圖,A,B,C,D是展開圖上的四點,BD則在正方體盒子中,AD與平面ABC所成角的正弦值為___________.16.已知,滿足約束條件則的最小值為__________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在等差數列中,,.(1)求數列的通項公式;(2)求數列的前n項和.18.(12分)已知橢圓的中心在原點,對稱軸為坐標軸且焦點在軸上,拋物線:,若拋物線的焦點在橢圓上,且橢圓的離心率為.(1)求橢圓的方程;(2)已知斜率存在且不為零的直線滿足:與橢圓相交于不同兩點、,與直線相交于點.若橢圓上一動點滿足:,,且存在點,使得恒為定值,求的值.19.(12分)已知拋物線C:上一點到焦點F的距離為2(1)求實數p的值;(2)若直線l過C的焦點,與拋物線交于A,B兩點,且,求直線l的方程20.(12分)已知拋物線的焦點為,點在拋物線上,且的面積為(為坐標原點)(1)求拋物線的標準方程;(2)點、是拋物線上異于原點的兩點,直線、的斜率分別為、,若,求證:直線恒過定點21.(12分)已知雙曲線與雙曲線的漸近線相同,且經過點.(1)求雙曲線的方程;(2)已知雙曲線的左右焦點分別為,直線經過,傾斜角為與雙曲線交于兩點,求的面積.22.(10分)年月日,中國向世界莊嚴宣告,中國脫貧攻堅戰取得了全面勝利,現行標準下萬農村貧困人口全部脫貧,個貧困縣全部摘帽,萬個貧困村全部出列,區域性整體貧困得到解決,完成了消除絕對貧困的艱巨任務,困擾中華民族幾千年的絕對貧困問題得到了歷史性的解決!為了鞏固脫貧成果,某農科所實地考察,研究發現某脫貧村適合種植、兩種經濟作物,可以通過種植這兩種經濟作物鞏固脫貧成果,通過大量考察研究得到如下統計數據:經濟作物的畝產量約為公斤,其收購價格處于上漲趨勢,最近五年的價格如下表:年份編號年份單價(元/公斤)經濟作物的收購價格始終為元/公斤,其畝產量的頻率分布直方圖如下:(1)若經濟作物的單價(單位:元/公斤)與年份編號具有線性相關關系,請求出關于的回歸直線方程,并估計年經濟作物的單價;(2)用上述頻率分布直方圖估計經濟作物的平均畝產量(每組數據以區間的中點值為代表),若不考慮其他因素,試判斷年該村應種植經濟作物還是經濟作物?并說明理由附:,
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】利用切點和斜率求得切線方程.【詳解】由,有曲線在點處的切線方程為,整理為故選:A2、D【解析】連接底面正方形的對角線交于點,連接,則為該正四棱錐的高,即平面,取的中點,連接,則的大小為側面與底面所成,設正方形的邊長為,求出該正四棱錐的底面邊長,斜高和高,然后對選項進行逐一判斷即可.【詳解】連接底面正方形的對角線交于點,連接則為該正四棱錐的高,即平面取的中點,連接,由正四棱錐的性質,可得由分別為的中點,所以,則所以為二面角的平面角,由條件可得設正方形的邊長為,則,又則,解得故選項A正確.所以,則該正四棱錐的體積為,故選項B正確.該正四棱錐的側面積為,故選項C正確.由題意為側棱與底面所成角,則,故選項D不正確.故選:D3、D【解析】由歐拉公式的定義和復數的概念進行求解.【詳解】由題意,得,則復數的虛部為.故選:D.4、D【解析】設數列的公比為q,由已知建立方程求得q,再利用等比數列的通項公式可求得答案.【詳解】解:因為數列是等比數列,是其前n項之積,,設數列的公比為q,所以,解得,所以,故選:D.5、D【解析】由正方體的性質可將異面直線與所成的角可轉化為直線與所成角,而當為的中點時,可得,可判斷A;與或重合時,直線與所成的角最小可判斷B;當與重合時,二面角的平面角最小,通過計算可判斷C;過作,交于,交于點,由題意可得四邊形即為平面截正方體所得的截面,且四邊形是等腰梯形,然后利用已知數據計算即可判斷D.【詳解】異面直線與所成的角可轉化為直線與所成角,當為中點時,,此時與所成的角為90°,所以A錯誤;當與或重合時,直線與所成角最小,為60°,所以B錯誤;當與重合時,二面角的平面角最小,,所以,所以C錯誤;對于D,過作,交于,交于點,因為,所以、分別是、的中點,又,所以,四邊形即為平面截正方體所得的截面,因為,且,所以四邊形是等腰梯形,作交于點,所以,,所以梯形的面積為,所以D正確.故選:D.6、D【解析】由到直線的距離等于到點的距離可得到直線的距離等于到點的距離,然后可得答案.【詳解】因為到直線的距離等于到點的距離,所以到直線的距離等于到點的距離,所以動點的軌跡是以為焦點、為準線的拋物線故選:D7、B【解析】建立空間直角坐標系,利用空間向量坐標運算即可求解.【詳解】如圖所示建立適當空間直角坐標系,故選:B8、C【解析】運用分類計數原理,結合組合數定義進行求解即可.【詳解】當3樓不要烤火爐時,不同的分發烤火爐的方法為:;當3樓需要1個烤火爐時,不同的分發烤火爐的方法為:;當3樓需要2個烤火爐時,不同的分發烤火爐的方法為:,所以分發烤火爐的方法總數為:,故選:C【點睛】關鍵點睛:運用分類計數原理是解題的關鍵.9、B【解析】由點在拋物線上,求得參數,焦點到其準線的距離即為.【詳解】由點在拋物線上,易知,,故焦點到其準線的距離為.故選:B.10、A【解析】以的中點О為坐標原點,建立平面直角坐標系,設雙曲線的方程為,設,,代入雙曲線的方程,求得,得到,進而求得雙曲線的離心率.【詳解】以的中點О為坐標原點,建立如圖所示的平面直角坐標系,則,設雙曲線的方程為,則,可設,,又由,在雙曲線上,所以,解得,,即,所以該雙曲線的離心率為.故選:A.第II卷11、C【解析】根據空間向量的線性運算即可求解.【詳解】因為,又因為,,所以.故選:C12、A【解析】由兩條直線垂直的條件可得答案.【詳解】由題意可知,即故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用漸近線斜率為和雙曲線的關系可構造關于的齊次方程,進而求得結果.【詳解】由漸近線方程可知:,即,,,(負值舍掉).故答案為:.【點睛】本題考查根據雙曲線漸近線方程求解離心率的問題,關鍵是利用漸進線的斜率構造關于的齊次方程.14、【解析】本題可先將直線的一般式化為斜截式,然后根據斜率即可得到直線的一個方向向量.【詳解】由題意可知,直線可以化為,所以直線的斜率為,直線的一個方向向量可以寫為.故答案為:.15、##【解析】先復原正方體,再構造線面角后可求正弦值.【詳解】復原后的正方體如圖所示,設所在面的正方形的余下的一個頂點為,連接,則平面,故為AD與平面ABC所成角,而,故為AD與平面ABC所成角的正弦值為.故答案為:.16、2【解析】由題意,根據約束條件作出可行域圖,如圖所示,將目標函數轉化為,作出其平行直線,并將其在可行域內平行上下移動,當移到頂點時,在軸上的截距最小,即.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)根據已知條件求得,由此求得數列的通項公式.(2)令,分和去掉絕對值,根據等差數列的求和公式求得.【小問1詳解】設等差數列的公差為,∵,,所以,所以,則.【小問2詳解】令,解得,當時,,,當時,.18、(1)(2)【解析】(1)先求得橢圓的,代入公式即可求得橢圓的方程;(2)以設而不求的方法得到兩根和,再由條件,得到四邊形為平行四邊形,并以向量方式進行等價轉化,再與恒為定值進行聯系,即可求得的值.【小問1詳解】由條件可設橢圓:,因為拋物線:的焦點為,所以,解得因為橢圓離心率為,所以,則,故橢圓的方程為【小問2詳解】設直線:,,,把直線的方程代入橢圓的方程,可得,所以,因為,,所以四邊形為平行四邊形,得,即,得由在橢圓上可得,,即因為,又所以,所以將代入得,所以,即.【點睛】數形結合是數學解題中常用的思想方法,數形結合的思想可以使某些抽象的數學問題直觀化、生動化,能夠變抽象思維為形象思維,有助于把握數學問題的本質;另外,由于使用了數形結合的方法,很多問題便迎刃而解,且解法簡捷。19、(1)2(2)或【解析】(1)根據拋物線上的點到焦點與準線的距離相等可得到結果(2)通過聯立拋物線與直線方程利用韋達定理求解關系式即可得到結果【小問1詳解】拋物線焦點為,準線方程為,因為點到焦點F距離為2,所以,解得【小問2詳解】拋物線C的焦點坐標為,當斜率不存在時,可得不滿足題意,當斜率存在時,設直線l的方程為聯立方程,得,顯然,設,,則,所以,解得所以直線l的方程為或20、(1);(2)證明見解析.【解析】(1)由點在拋物線上可得出,再利用三角形的面積公式可得出關于的等式,解出正數的值,即可得出拋物線的標準方程;(2)設點、,利用斜率公式結合已知條件可得出的值,分析可知直線不與軸垂直,可設直線的方程為,將該直線方程與拋物線的方程聯立,利用韋達定理求出的值,即可得出結論.【小問1詳解】解:拋物線的焦點為,由已知可得,則,,,解得,因此,拋物線的方程為.【小問2詳解】證明:設點、,則,可得.若直線軸,則該直線與拋物線只有一個交點,不合乎題意.設直線的方程為,聯立,可得,由韋達定理可得,可得,此時,合乎題意.所以,直線的方程為,故直線恒過定點.21、(1);(2).【解析】(1)由兩條雙曲線有共同漸近線,可令雙曲線方程為,求出即可得雙曲線的方程;(2)根據已知有直線為,由其與雙曲線的位置關系,結合弦長公式、點線距離公式及三角形面積公式求的面積.【詳解】(1)設所求雙曲線方程為,代入點得:,即,∴雙曲線方程為,即.(2)由(1)知:,即直線方程為.設,聯立得,滿足且,,由弦長公式得,點到直線的距離.所以【點睛】本題考查了雙曲線,根據雙曲線共漸近線求雙曲線方程,由直線與雙曲線
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年項目管理關鍵指標設計的考點試題及答案
- 玻璃制品安全生產與應急預案考核試卷
- 生物農藥在病蟲害防治中的綜合評價考核試卷
- 證券從業資格證考試心理準備試題及答案
- 磷肥工藝優化與節能減排考核試卷
- 2025年【金屬非金屬礦山支柱】模擬考試題及答案
- 機械加工中的智能供應鏈管理考核試卷
- 油田投球機安裝施工方案
- 復述上面已經提到的主題以下是新的個主題名稱考核試卷
- 園藝師參與科研項目的必要性試題及答案
- 婚禮執事單模板
- 《紅色旅游線路設計》
- DB4102-T 025-2021海綿城市建設施工與質量驗收規范-(高清現行)
- 冷鏈產品運輸記錄表
- 導線的連接精品課件
- 二年級美術下冊課件-第14課 蟲蟲蟲(一)2-蘇少版(共22張PPT)
- 兒童保健學課件:緒論
- 中小學校園安全穩定工作崗位責任清單
- 論提高行政效率的途徑 開題報告
- 濃縮機的選擇與計算
- 滬教版六年級下冊單詞表
評論
0/150
提交評論