




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆武昌實驗中學高二數學第一學期期末學業質量監測模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.圓的圓心和半徑分別是()A., B.,C., D.,2.已知等差數列的前n項和為Sn,首項a1=1,若,則公差d的取值范圍為()A. B.C. D.3.設函數若函數有兩個零點,則實數m的取值范圍是()A. B.C. D.4.已知點P在拋物線上,點Q在圓上,則的最小值為()A. B.C. D.5.若,則()A.22 B.19C.-20 D.-196.函數的定義域是,,對任意,,則不等式的解集為()A. B.C.或 D.或7.不等式的解集是()A. B.C.或 D.或8.若雙曲線的離心率為3,則的最小值為()A. B.1C. D.29.已知函數為偶函數,則在處的切線方程為()A. B.C. D.10.若雙曲線的一個焦點為,則的值為()A. B.C.1 D.11.函數的圖像大致是()A B.C. D.12.數學家歐拉在1765年提出定理:三角形的外心、重心、垂心位于同一直線上,且重心到外心的距離是重心到垂心距離的一半,這條直線被后人稱為三角形的歐拉線已知的頂點,則的歐拉線方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.橢圓的焦距為______.14.數列滿足,,其前n項積為,則______15.已知雙曲線的左、右焦點分別為,,O為坐標原點,點M是雙曲線左支上的一點,若,,則雙曲線的離心率是____________16.已知平面的法向量為,平面的法向量為,若,則___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在△ABC中,角A,B,C所對的邊分別a,b,c.已知2bcosB=ccosA+acosC(1)求B;(2)若a=2,,設D為CB延長線上一點,且AD⊥AC,求線段BD的長18.(12分)設橢圓的左、右焦點分別為,,離心率為,短軸長為.(1)求橢圓的標準方程;(2)設左、右頂點分別為、,點在橢圓上(異于點、),求的值;(3)過點作一條直線與橢圓交于兩點,過作直線的垂線,垂足為.試問:直線與是否交于定點?若是,求出該定點的坐標,否則說明理由.19.(12分)已知直線,圓.(1)求證:直線l恒過定點;(2)若直線l的傾斜角為,求直線l被圓C截得的弦長.20.(12分)設命題p:,命題q:關于x的方程無實根.(1)若p為真命題,求實數m的取值范圍;(2)若為假命題,為真命題,求實數m的取值范圍21.(12分)已知單調遞增的等比數列滿足:,且是,的等差中項(1)求數列的通項公式;(2)若,,求22.(10分)如圖,在幾何體中,底面是邊長為2的正三角形,平面,,且是的中點.(1)求證:平面;(2)求二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】先化為標準方程,再求圓心半徑即可.【詳解】先化為標準方程可得,故圓心為,半徑為.故選:D.2、A【解析】該等差數列有最大值,可分析得,據此可求解.【詳解】,故,故有故d取值范圍為.故選:A3、D【解析】有兩個零點等價于與的圖象有兩個交點,利用導數分析函數的單調性與最值,畫出函數圖象,數形結合可得結果.【詳解】解:設,則,所以在上遞減,在上遞增,,且時,,有兩個零點等價于與的圖象有兩個交點,畫出的圖象,如下圖所示,由圖可得,時,與的圖象有兩個交點,此時,函數有兩個零點,實數m的取值范圍是,故選:D.【點睛】方法點睛:本題主要考查分段函數的性質、利用導數研究函數的單調性、函數的零點,以及數形結合思想的應用,屬于難題.數形結合是根據數量與圖形之間的對應關系,通過數與形的相互轉化來解決數學問題的一種重要思想方法,函數圖象是函數的一種表達形式,它形象地揭示了函數的性質,為研究函數的數量關系提供了“形”的直觀性.歸納起來,圖象的應用常見的命題探究角度有:1、確定方程根的個數;2、求參數的取值范圍;3、求不等式的解集;4、研究函數性質4、C【解析】先計算拋物線上的點P到圓心距離的最小值,再減去半徑即可.【詳解】設,由圓心,得,∴時,,∴故選:C.5、C【解析】將所求進行變形可得,根據二項式定理展開式,即可求得答案.【詳解】由題意得所以.故選:C6、A【解析】構造函數,結合已知條件可得恒成立,可得為上的減函數,再由,從而將不等式轉換為,根據單調性即可求解.【詳解】構造函數,因為,所以為上的增函數又因為,所以原不等式轉化為,即,解得.所以原不等式的解集為,故選:A.7、A【解析】確定對應二次方程的解,根據三個二次的關系寫出不等式的解集【詳解】,即為,故選:A8、D【解析】由雙曲線的離心率為3和,求得,化簡,結合基本不等式,即可求解.【詳解】由題意,雙曲線的離心率為3,即,即,又由,可得,所以,當且僅當,即時,“”成立.故選:D【點睛】使用基本不等式解答問題的策略:1、利用基本不等式求最值時,要注意三點:一是各項為正;二是尋求定值;三是考慮等號成立的條件;2、若多次使用基本不等式時,容易忽視等號的條件的一致性,導致錯解;3、巧用“拆”“拼”“湊”:在使用基本不等式時,要特別注意“拆”“拼”“湊”等技巧,使其滿足基本不等式中的“正、定、等”的條件.9、A【解析】根據函數是偶函數可得,可求出,求出函數在處的導數值即為切線斜率,即可求出切線方程.【詳解】函數為偶函數,,即,解得,,則,,且,切線方程為,整理得.故選:A.【點睛】本題考查函數奇偶性的應用,考查利用導數求切線方程,屬于基礎題.10、B【解析】由題意可知雙曲線的焦點在軸,從而可得,再列方程可求得結果【詳解】因為雙曲線的一個焦點為,所以,,所以,解得,故選:B11、B【解析】由函數有兩個零點排除選項A,C;再借助導數探討函數的單調性與極值情況即可判斷作答.【詳解】由得,或,選項A,C不滿足;由求導得,當或時,,當時,,于是得在和上都單調遞增,在上單調遞減,在處取極大值,在處取極小值,D不滿足,B滿足.故選:B12、D【解析】根據題意得出的歐拉線即為線段的垂直平分線,然后求出線段的垂直平分線的方程即可.【詳解】因為,所以線段的中點的坐標,線段所在直線的斜率,則線段的垂直平分線的方程為,即,因為,所以的外心、重心、垂心都在線段的垂直平分線上,所以的歐拉線方程為.故選:D【點睛】本題主要考走查直線的方程,解題的關鍵是準確找出歐拉線,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由求出即可.【詳解】可化為,設焦距為,則,則焦距故答案為:14、【解析】根據數列的項的周期性,去求的值即可解決.【詳解】由,,可得,,,,,,由此可知數列的項具有周期性,且周期為4,第一周期內的四項之積為1,所以數列的前2022項之積為故答案為:15、5【解析】根據得出,設,從而利用雙曲線的定義可求出,的關系,從而可求出答案.【詳解】設雙曲線的焦距為,則,因為,所以,因為,不妨設,,由雙曲線的定義可得,所以,,由勾股定理可得,,所以,所以雙曲線的離心率故答案為:.16、2【解析】由,可兩平面的法向量也平行,從而可求出,進而可求得答案【詳解】因為平面的法向量為,平面的法向量為,,所以∥,所以存實數使,所以,所以,解得,所以,故答案為:2三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)利用正弦定理化簡已知條件,求得,由此求得.(2)利用正弦定理求得,由列方程來求得.【小問1詳解】,由正弦定理得,因為,所以,.【小問2詳解】由(1)知,,由正弦定理:得,,或(舍去),,,所以由得,,18、(1);(2);(3)是,.【解析】(1)由題意,列出所滿足的等量關系式,結合橢圓中的關系,求得,從而求得橢圓的方程;(2)寫出,設,利用斜率坐標公式求得兩直線斜率,結合點在橢圓上,得出,從而求得結果;(3)設直線的方程為:,,則,聯立方程可得:,結合韋達定理,得到,結合直線的方程,得到直線所過的定點坐標.【詳解】(1)由題意可知,,又,所以,所以橢圓的標準方程為:.(2),設,因為點在橢圓上,所以,,又,.(3)設直線的方程為:,,則,聯立方程可得:,所以,所以,又直線的方程為:,令,則,所以直線恒過,同理,直線恒過,即直線與交于定點.【點睛】思路點睛:該題考查是有關橢圓的問題,解題思路如下:(1)根據題中所給的條件,結合橢圓中的關系,建立方程組求得橢圓方程;(2)根據斜率坐標公式,結合點在橢圓上,整理求得斜率之積,可以當結論來用;(3)將直線與橢圓方程聯立,結合韋達定理,結合直線方程,求得其過的定點.19、(1)證明見解析(2)【解析】(1)直線方程變形后令的系數等于0消去參數即可求得定點坐標.(2)先求出圓心C到直線l距離,然后用勾股定理即可求得弦長.【小問1詳解】,聯立得:即直線l過定點(.【小問2詳解】由題意直線l的斜率,即,∴,圓,圓心,半徑,圓心C到直線l的距離,所以直線l被圓C所截得的弦長為.20、(1)(2)【解析】(1)解一元二次不等式,即可求得當為真命題時的取值范圍;(2)先求得命題為真命題時的取值范圍.由為假命題,為真命題可知,兩命題一真一假.分類討論,即可求得的取值范圍.【詳解】(1)當為真命題時,解不等式可得;(2)當為真命題時,由,可得,∵為假命題,為真命題,∴,兩命題一真一假,∴或,解得或,∴m的取值范圍是.【點睛】本題考查了根據命題真假求參數的取值范圍,由復合命題真假判斷命題真假,并求參數的取值范圍,屬于基礎題.21、(1);(2)【解析】(1)將已知條件整理變形為等比數列的首項和公比來表示,解方程組得到基本量,可得到通項公式(2)化簡通項得,根據特點求和時采用錯位相減法求解試題解析:(1)設等比數列的首項為,公比為,依題意,有2()=+,代入,得=8,2分∴+=20∴解之得或4分又單調遞增,∴="2,"=2,∴=2n6分(2),∴①8分∴②∴①-②得=12分考點:1.等比數列通項公式;2.錯位相減求和22、(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 中藥師聘用合同標準文本
- 公司酒水銷售合同樣本
- 會展物料租賃搭建合同樣本
- 入股駕校合同樣本
- 共享展廳運營合同樣本
- 企業股權合同樣本
- 沈陽監控員考試題及答案
- 大學生課程實踐周總結
- 腦動脈血管瘤術后護理
- 語言安全公開課小班
- 《滅火器維修》GA95-2015(全文)
- 學校學生特異體質調查表
- vmvare虛擬化平臺巡檢細則和方法
- 非連續性文本閱讀訓練(六年級語文復習)
- 市政工程監理規劃范本(完整版)
- 剪刀式升降機
- 渤海灣盆地構造演化及其油氣意義
- 法院辦公室廉政風險防控責任清單
- 并聯高抗中性點小電抗補償原理分析及參數選擇方法
- 水蛭深加工提取天然水蛭素項目資金申請報告寫作模板
- 讓創造力照亮每一個孩子的未來向明初級中學
評論
0/150
提交評論