




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆天津市寶坻一中等七校高二上數(shù)學(xué)期末教學(xué)質(zhì)量檢測(cè)模擬試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.()A. B.C. D.2.在中,角A,B,C所對(duì)的邊分別為a,b,c,已知,則的面積為()A. B.C. D.3.準(zhǔn)線方程為的拋物線的標(biāo)準(zhǔn)方程為()A. B.C. D.4.在等差數(shù)列中,若,則()A.6 B.9C.11 D.245.已知傾斜角為的直線與雙曲線,相交于,兩點(diǎn),是弦的中點(diǎn),則雙曲線的漸近線的斜率是()A. B.C. D.6.已知點(diǎn)是橢圓上一點(diǎn),點(diǎn),則的最小值為A. B.C. D.7.如圖,在三棱錐中,是線段的中點(diǎn),則()A. B.C. D.8.已知三棱柱的所有棱長(zhǎng)均為2,平面,則異面直線,所成角的余弦值為()A. B.C. D.9.4位同學(xué)報(bào)名參加四個(gè)課外活動(dòng)小組,每位同學(xué)限報(bào)其中的一個(gè)小組,則不同的報(bào)名方法共有()A.24種 B.81種C.64種 D.256種10.已知函數(shù)在上單調(diào)遞增,則實(shí)數(shù)a的取值范圍為()A. B.C. D.11.已知分別是等差數(shù)列的前項(xiàng)和,且,則()A. B.C. D.12.閱讀如圖所示的程序框圖,運(yùn)行相應(yīng)的程序,輸出S的結(jié)果是()A.128 B.64C.16 D.32二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在長(zhǎng)方體中,,,則直線與平面所成角的正弦值為_(kāi)_________.14.已知三角形OAB頂點(diǎn),,,則過(guò)B點(diǎn)的中線長(zhǎng)為_(kāi)_____.15.圓錐曲線有良好的光學(xué)性質(zhì),光線從橢圓的一個(gè)焦點(diǎn)發(fā)出,被橢圓反射后會(huì)經(jīng)過(guò)橢圓的另一個(gè)焦點(diǎn)(如左圖);光線從雙曲線的一個(gè)焦點(diǎn)發(fā)出,被雙曲線反射后的反射光線等效于從另一個(gè)焦點(diǎn)射出(如中圖).封閉曲線E(如右圖)是由橢圓C1:+=1和雙曲線C2:-=1在y軸右側(cè)的一部分(實(shí)線)圍成.光線從橢圓C1上一點(diǎn)P0出發(fā),經(jīng)過(guò)點(diǎn)F2,然后在曲線E內(nèi)多次反射,反射點(diǎn)依次為P1,P2,P3,P4,…,若P0,P4重合,則光線從P0到P4所經(jīng)過(guò)的路程為_(kāi)________.16.已知數(shù)列{an}滿足an+2=an+1-an(n∈N*),且a1=2,a2=3,則a2022的值為_(kāi)________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)某城市戶居民的月平均用電量(單位:度),以,,,,,,分組的頻率分布直方圖如圖(1)求直方圖中的值;(2)求月平均用電量的眾數(shù)和中位數(shù);(3)在月平均用電量為,,,的四組用戶中,用分層抽樣的方法抽取戶居民,則月平均用電量在的用戶中應(yīng)抽取多少戶?18.(12分)設(shè)等差數(shù)列的前項(xiàng)和為(1)求的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和19.(12分)已知等比數(shù)列前3項(xiàng)和為(1)求的通項(xiàng)公式;(2)若對(duì)任意恒成立,求m的取值范圍20.(12分)在三棱柱中,側(cè)面正方形的中心為點(diǎn)平面,且,點(diǎn)滿足(1)若平面,求的值;(2)求點(diǎn)到平面的距離;(3)若平面與平面所成角的正弦值為,求的值21.(12分)某公司舉辦捐步公益活動(dòng),參與者通過(guò)捐贈(zèng)每天運(yùn)動(dòng)步數(shù)獲得公司提供的牛奶,再將牛奶捐贈(zèng)給留守兒童.此活動(dòng)不但為公益事業(yè)作出了較大的貢獻(xiàn),還為公司獲得了相應(yīng)的廣告效益,據(jù)測(cè)算,首日參與活動(dòng)人數(shù)為5000人,以后每天人數(shù)比前一天都增加15%,30天后捐步人數(shù)穩(wěn)定在第30天的水平,假設(shè)此項(xiàng)活動(dòng)的啟動(dòng)資金為20萬(wàn)元,每位捐步者每天可以使公司收益0.05元(以下人數(shù)精確到1人,收益精確到1元)(1)求活動(dòng)開(kāi)始后第5天的捐步人數(shù),及前5天公司的捐步總收益;(2)活動(dòng)開(kāi)始第幾天以后公司的捐步總收益可以收回啟動(dòng)資金并有盈余?22.(10分)已知橢圓的一個(gè)頂點(diǎn)恰好是拋物線的焦點(diǎn),橢圓C的離心率為.(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;(Ⅱ)從橢圓C在第一象限內(nèi)的部分上取橫坐標(biāo)為2的點(diǎn)P,若橢圓C上有兩個(gè)點(diǎn)A,B使得的平分線垂直于坐標(biāo)軸,且點(diǎn)B與點(diǎn)A的橫坐標(biāo)之差為,求直線AP的方程.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】根據(jù)微積分基本定理即可直接求出答案.【詳解】故選:B.2、A【解析】由余弦定理計(jì)算求得角,根據(jù)三角形面積公式計(jì)算即可得出結(jié)果.【詳解】由余弦定理得,,∴,∴,故選:A3、D【解析】的準(zhǔn)線方程為.【詳解】的準(zhǔn)線方程為.故選:D.4、B【解析】根據(jù)等差數(shù)列的通項(xiàng)公式的基本量運(yùn)算求解【詳解】設(shè)的公差為d,因?yàn)椋裕郑怨蔬x:B5、A【解析】依據(jù)點(diǎn)差法即可求得的關(guān)系,進(jìn)而即可得到雙曲線的漸近線的斜率.【詳解】設(shè),則由,可得則,即,則則雙曲線的漸近線的斜率為故選:A6、D【解析】設(shè),則,.所以當(dāng)時(shí),的最小值為.故選D.7、A【解析】根據(jù)給定幾何體利用空間向量基底結(jié)合向量運(yùn)算計(jì)算作答.【詳解】在三棱錐中,是線段的中點(diǎn),所以:.故選:A8、A【解析】建立空間直角坐標(biāo)系,利用向量法求解【詳解】以為坐標(biāo)原點(diǎn),平面內(nèi)過(guò)點(diǎn)且垂直于的直線為軸,所在直線為軸,所在直線為軸建立空間直角坐標(biāo)系,如圖所示,則,,,,∴,,∴,∴異面直線,所成角的余弦值為.故選:A9、D【解析】利用分步乘法計(jì)數(shù)原理進(jìn)行計(jì)算.【詳解】每位同學(xué)均有四種選擇,故不同的報(bào)名方法有種.故選:D10、D【解析】根據(jù)題意參變分離得到,求出的最小值,進(jìn)而求出實(shí)數(shù)a的取值范圍.【詳解】由題意得:在上恒成立,即,其中在處取得最小值,,所以,解得:,故選:D11、D【解析】利用及等差數(shù)列的性質(zhì)進(jìn)行求解.【詳解】分別是等差數(shù)列的前項(xiàng)和,故,且,故,故選:D12、C【解析】根據(jù)程序框圖的循環(huán)邏輯寫出執(zhí)行步驟,即可確定輸出結(jié)果.【詳解】根據(jù)流程圖的執(zhí)行邏輯,其執(zhí)行步驟如下:1、成立,則;2、成立,則;3、成立,則;4、成立,則;5、不成立,輸出;故選:C二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】過(guò)作,垂足為,則平面,則即為所求角,從而可得結(jié)果.【詳解】依題意,畫出圖形,如圖,過(guò)作,垂足為,可知點(diǎn)H為中點(diǎn),由平面,可得,又所以平面,則即為所求角,因?yàn)椋裕蚀鸢笧椋?14、【解析】先求出中點(diǎn)坐標(biāo),再由距離公式得出過(guò)B點(diǎn)的中線長(zhǎng).【詳解】由中點(diǎn)坐標(biāo)公式可得中點(diǎn),則過(guò)B點(diǎn)的中線長(zhǎng)為.故答案為:15、【解析】結(jié)合橢圓、雙曲線的定義以及它們的光學(xué)性質(zhì)求得正確答案.【詳解】橢圓;雙曲線,雙曲線和橢圓的焦點(diǎn)重合.根據(jù)雙曲線的定義有,所以①,②,根據(jù)橢圓的定義由,所以路程.故答案為:16、【解析】根據(jù)遞推關(guān)系求出數(shù)列的前幾項(xiàng),得周期性,然后可得結(jié)論【詳解】由題意,,,,,,所以數(shù)列是周期數(shù)列,周期為6,所以故答案為:三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2),;(3)【解析】(1)由直方圖的性質(zhì)可得(0.002+0.0095+0.011+0.0125+x+0.005+0.0025)×20=1,解方程可得;(2)由直方圖中眾數(shù)為最高矩形上端的中點(diǎn)可得,可得中位數(shù)在[220,240)內(nèi),設(shè)中位數(shù)為a,解方程(0.002+0.0095+0.011)×20+0.0125×(a-220)=0.5可得;(3)可得各段的用戶分別為25,15,10,5,可得抽取比例,可得要抽取的戶數(shù)試題解析:(1)由直方圖的性質(zhì)可得(0.002+0.0095+0.011+0.0125+x+0.005+0.0025)×20=1得:x=0.0075,所以直方圖中x的值是0.0075.-------------3分(2)月平均用電量的眾數(shù)是=230.-------------5分因?yàn)?0.002+0.0095+0.011)×20=0.45<0.5,所以月平均用電量的中位數(shù)在[220,240)內(nèi),設(shè)中位數(shù)為a,由(0.002+0.0095+0.011)×20+0.0125×(a-220)=0.5得:a=224,所以月平均用電量的中位數(shù)是224.------------8分(3)月平均用電量為[220,240)的用戶有0.0125×20×100=25戶,月平均用電量為[240,260)的用戶有0.0075×20×100=15戶,月平均用電量為[260,280)的用戶有0.005×20×100=10戶,月平均用電量為[280,300]的用戶有0.0025×20×100=5戶,-------------10分抽取比例==,所以月平均用電量在[220,240)的用戶中應(yīng)抽取25×=5戶.--12分考點(diǎn):頻率分布直方圖及分層抽樣18、(1);(2).【解析】(1)根據(jù)等差數(shù)列前n項(xiàng)和求和公式求出首項(xiàng)和公差,進(jìn)而求出通項(xiàng)公式;(2)結(jié)合(1)求出,再令得出數(shù)列的正數(shù)項(xiàng)和負(fù)數(shù)項(xiàng),進(jìn)而結(jié)合等差數(shù)列求和公式求得答案.【小問(wèn)1詳解】設(shè)等差數(shù)列的首項(xiàng)和公差分別為和,∴,解得:所以.【小問(wèn)2詳解】,所以.當(dāng);當(dāng),當(dāng),時(shí),,當(dāng)時(shí),.綜上:.19、(1)(2)【解析】(1)由等比數(shù)列的基本量,列式,即可求得首項(xiàng)和公比,再求通項(xiàng)公式;(2)由題意轉(zhuǎn)化為求數(shù)列的前項(xiàng)和的最大值,即可求參數(shù)的取值范圍.【小問(wèn)1詳解】設(shè)等比數(shù)列的公比為,則,①,即,得,即,代入①得,解得:,所以;【小問(wèn)2詳解】由(1)可知,數(shù)列是首項(xiàng)為2,公比為的等比數(shù)列,,若對(duì)任意恒成立,即,數(shù)列,,單調(diào)遞增,的最大值無(wú)限趨近于4,所以20、(1);(2);(3)或.【解析】(1)連接ME,證明即可計(jì)算作答.(2)以為原點(diǎn),的方向分別為軸正方向建立空間直角坐標(biāo)系,借助空間向量計(jì)算點(diǎn)到平面的距離即可.(3)由(2)中空間直角坐標(biāo)系,借助空間向量求平面與平面所成角的余弦即可計(jì)算作答.【小問(wèn)1詳解】在三棱柱中,因,即點(diǎn)在上,連接ME,如圖,因平面面,面面,則有,而為中點(diǎn),于是得為的中點(diǎn),所以.【小問(wèn)2詳解】在三棱柱中,面面,則點(diǎn)到平面的距離等于點(diǎn)到平面的距離,又為正方形,即,而平面,以為原點(diǎn),的方向分別為軸正方向建立空間直角坐標(biāo)系,如圖,依題意,,則,,設(shè)平面的法向量為,則,令,得,又,則到平面的距離,所以點(diǎn)到平面的距離為.【小問(wèn)3詳解】因,則,,設(shè)面的法向量為,則,令,得,于是得,而平面與平面所成角的正弦值為,則,即,整理得,解得或,所以的值是或.【點(diǎn)睛】易錯(cuò)點(diǎn)睛:空間向量求二面角時(shí),一是兩平面的法向量的夾角不一定是所求的二面角,二是利用方程思想進(jìn)行向量運(yùn)算,要認(rèn)真細(xì)心,準(zhǔn)確計(jì)算.21、(1)8745,1686元(2)37天【解析】(1)根據(jù)等比數(shù)列的性質(zhì)求出結(jié)果;(2)對(duì)活動(dòng)天數(shù)進(jìn)行討論,列出不等式求出的范圍即可.【小問(wèn)1詳解】設(shè)第天的捐步人數(shù)為,則且,∴第5天的捐步人數(shù)為由題意可知前5天的捐步人數(shù)成等比數(shù)列,其中首項(xiàng)為5000,公比為1.15,∴前5天的捐步總收益為元.【小問(wèn)2詳解】設(shè)活動(dòng)第天后公司捐步總收益可以回收并有盈余,若,則,解得(舍)若,則,解得∴活動(dòng)開(kāi)始后第37天公司的捐步總收益可以收回啟動(dòng)資金并有盈余.22、(Ⅰ);(Ⅱ).【解析】(Ⅰ)由題意可得關(guān)于參數(shù)的方程,解之即可得到結(jié)果;(Ⅱ)設(shè)直線AP的斜率為k,聯(lián)立方程結(jié)合韋達(dá)定理可得A點(diǎn)坐標(biāo),同理可得B點(diǎn)坐
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 詩(shī)詞中考語(yǔ)文作文
- 私募股權(quán)投資光伏產(chǎn)業(yè)投資策略考核試卷
- 畜產(chǎn)品加工設(shè)備智能化升級(jí)與技術(shù)應(yīng)用考核試卷
- 升國(guó)旗初二語(yǔ)文作文
- 滑動(dòng)軸承加工工藝與技術(shù)考核試卷
- 文具批發(fā)商的市場(chǎng)營(yíng)銷策略實(shí)施考核試卷
- 紡織品在汽車座椅加熱與通風(fēng)技術(shù)的應(yīng)用考核試卷
- 石棉廢棄物處理與回收利用考核試卷
- 港口機(jī)械維護(hù)與故障排除考核試卷
- 白酒的市場(chǎng)份額與市場(chǎng)擴(kuò)張計(jì)劃考核試卷
- 《陪診從業(yè)人員能力培訓(xùn)標(biāo)準(zhǔn)》
- 《氫氣輸送管道工程設(shè)計(jì)規(guī)范》
- 管網(wǎng)工程施工重難點(diǎn)分析及對(duì)應(yīng)措施
- 2024ESC心房顫動(dòng)管理指南解讀-完整版
- 砂石場(chǎng)生產(chǎn)線承包合同
- DB51T 2943-2022 四川省一體化政務(wù)服務(wù)平臺(tái)系統(tǒng)接入規(guī)范
- 飛機(jī)空氣動(dòng)力學(xué)課件:翼型的空氣動(dòng)力特性
- 《地方鐵路運(yùn)輸企業(yè)安全生產(chǎn)標(biāo)準(zhǔn)化建設(shè)規(guī)范》
- 農(nóng)業(yè)科技的智能灌溉
- 森林防火護(hù)林員聘用合同
- 人教版中職數(shù)學(xué)拓展模塊一:6.1.1復(fù)數(shù)的相關(guān)概念課件
評(píng)論
0/150
提交評(píng)論