2025屆吉林省松原市第一中學數學九年級第一學期開學統考模擬試題【含答案】_第1頁
2025屆吉林省松原市第一中學數學九年級第一學期開學統考模擬試題【含答案】_第2頁
2025屆吉林省松原市第一中學數學九年級第一學期開學統考模擬試題【含答案】_第3頁
2025屆吉林省松原市第一中學數學九年級第一學期開學統考模擬試題【含答案】_第4頁
2025屆吉林省松原市第一中學數學九年級第一學期開學統考模擬試題【含答案】_第5頁
已閱讀5頁,還剩19頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

學校________________班級____________姓名____________考場____________準考證號學校________________班級____________姓名____________考場____________準考證號…………密…………封…………線…………內…………不…………要…………答…………題…………第1頁,共4頁2025屆吉林省松原市第一中學數學九年級第一學期開學統考模擬試題題號一二三四五總分得分批閱人A卷(100分)一、選擇題(本大題共8個小題,每小題4分,共32分,每小題均有四個選項,其中只有一項符合題目要求)1、(4分)正方形ABCD的邊長為4,點E在對角線BD上,且∠BAE=22.50,EF⊥AB,垂足為F,則EF的長()A.1 B. C. D.2、(4分)下列方程中,有實數解的方程是()A.; B.;C.; D.3、(4分)方程的解是()A. B. C. D.或4、(4分)反比例函數y=在第一象限的圖象如圖所示,則k的值可能是()A.1 B.2 C.3 D.45、(4分)如圖,在平行四邊形中,,是對角線上不同的兩點,連接,,,.下列條件中,不能得出四邊形一定是平行四邊形的為()A. B.C. D.6、(4分)下列關系不是函數關系的是()A.汽車在勻速行駛過程中,油箱的余油量y(升)是行駛時間t(小時)的函數B.改變正實數x,它的平方根y隨之改變,y是x的函數C.電壓一定時,通過某電阻的電流強度I(單位:安)是電阻R(單位:歐姆)的函數D.垂直向上拋一個小球,小球離地的高度h(單位:米)是時間t(單位:秒)的函數7、(4分)將一副直角三角板如圖放置,點C在FD的延長上,AB∥CF,∠F=∠ACB=90°,∠E=30°,∠A=45°,AC=12,則CD的長為()A.4 B.12﹣4 C.12﹣6 D.68、(4分)如圖,在四邊形ABCD中,對角線AC,BD相交于點O,AB∥CD,添加下列條件不能使四邊形ABCD成為平行四邊形的是()A.AB=CD B.OB=ODC.∠BCD+∠ADC=180° D.AD=BC二、填空題(本大題共5個小題,每小題4分,共20分)9、(4分)已知正比例函數y=kx的圖象經過點A(﹣1,2),則正比例函數的解析式為.10、(4分)如圖,是的中位線,平分交于,,則的長為________.11、(4分)如圖所示的圓形工件,大圓的半徑為,四個小圓的半徑為,則圖中陰影部分的面積是_____(結果保留).12、(4分)化簡3﹣2=_____.13、(4分)已知一次函數y=x+4的圖象經過點(m,6),則m=_____.三、解答題(本大題共5個小題,共48分)14、(12分)已知:如圖,平行四邊形ABCD的對角線相交于點O,點E在邊BC的延長線上,且OE=OB,聯結DE.(1)求證:DE⊥BE;(2)設CD與OE交于點F,若OF2+FD2=OE2,CE=3,DE=4,求線段CF的長.15、(8分)按要求作答(1)解方程;(2)計算.16、(8分)已知:如圖,菱形ABCD的對角線AC,BD相交于O,點E,F分別是AD,DC的中點,已知OE=,EF=3,求菱形ABCD的周長和面積.17、(10分)先化簡,再求值:其中a=18、(10分)如圖,將長方形ABCD沿EF折疊,使頂點C恰好落在AB邊的中點上.若,,求BF的長.B卷(50分)一、填空題(本大題共5個小題,每小題4分,共20分)19、(4分)化簡:(+2)(﹣2)=________.20、(4分)函數的自變量x的取值范圍______.21、(4分)在中,,,點是中點,點在上,,將沿著翻折,點的對應點是點,直線與交于點,那么的面積__________.22、(4分)如圖,甲、乙兩名同學分別站在C、D的位置時,乙的影子與甲的影子的末端恰好在同一點,已知甲、乙兩同學相距1m,甲身高1.8m,乙身高1.5m,則甲的影子是________m.23、(4分)A、B兩城相距600千米,甲、乙兩車同時從A城出發駛向B城,甲車到達B城后立即返回,返回途中與乙車相遇。如圖是它們離A城的距離(km)與行駛時間(h)之間的函數圖象。當它們行駛7(h)時,兩車相遇,則乙車速度的速度為____________.二、解答題(本大題共3個小題,共30分)24、(8分)如圖,直線與軸、軸分別交于,點的坐標為,是直線在第一象限內的一個動點(1)求⊿的面積與的函數解析式,并寫出自變量的取值范圍?(2)過點作軸于點,作軸于點,連接,是否存在一點使得的長最小,若存在,求出的最小值;若不存在,請說明理由?25、(10分)計算:(1);(2);(3)26、(12分)如圖所示,已知是的外角,有以下三個條件:①;②∥;③.(1)在以上三個條件中選兩個作為已知,另一個作為結論寫出一個正確命題,并加以證明.(2)若∥,作的平分線交射線于點,判斷的形狀,并說明理由

參考答案與詳細解析一、選擇題(本大題共8個小題,每小題4分,共32分,每小題均有四個選項,其中只有一項符合題目要求)1、B【解析】

根據題意連接AC,與BD的交點為O.再根據,,可得AE是的角平分線,所以可得OE=EF,BE=,所以OB=,因此可計算出EF的長.【詳解】解:根據題意連接AC,與BD的交點為O.四邊形ABCD為正方形AE是的角平分線故選B.本題主要考查正方形的性質,關鍵在于根據題意列出方程,這是考試的常考點,應當熟練掌握.2、B【解析】

首先對每一項的方程判斷有無實數解,就是看方程的解是否存在能滿足方程的左右兩邊相等的實數.一元二次方程要有實數根,則△≥0;算術平方根不能為負數;分式方程化簡后求出的根要滿足原方程.【詳解】

解:A項移項得:,等式不成立,所以原方程沒有實數解,故本選項錯誤;B項移項得,存在實數x使等式成立;所以原方程有實數解,故本選項符合題意;C項是一元二次方程,△==-15<0,方程無實數根,故本選項錯誤;D.化簡分式方程后,求得x=1,檢驗后,x=1為增根,故原分式方程無解.故本選項錯誤;故選B.本題考查了無理方程、高次方程、分式方程的解法,二次根式的性質,屬于基礎知識,需熟練掌握.3、D【解析】

解:先移項,得x2-3x=0,再提公因式,得x(x-3)=0,從而得x=0或x=3故選D.本題考查因式分解法解一元二次方程.4、C【解析】如圖,當x=2時,y=,∵1<y<2,∴1<<2,解得2<k<4,所以k=1.故選C.5、B【解析】

連接AC與BD相交于O,然后利用平行四邊形的性質和三角形全等的性質進行判別即可【詳解】如圖,連接AC與BD相交于O,在平行四邊形ABCD中,OA=OC,OB=OD要使四邊形AECF為平行四邊形,只需證明得到OE=OF即可A、若BE=DF,則OB-BE=OD-DF,即OE=OF,故選項不符合題意B、若AE=CF,則無法判斷OE=OF,故選項符合題意C、AF∥CE能利用角角邊證明△AOF和△COE全等,從而得到OE=OF,放選項不符合題意D、∠BAE=∠DCF能夠利用角角邊證明△ABE和△CDF全等,從而得到DF=BE,然后根據A選項可得OE=OF,故選項不符合題意故答案為:B.此題考查平行四邊形的性質和全等三角形的性質,解題關鍵在于作輔助線6、B【解析】

利用函數的定義:設在一個變化過程中有兩個變量x與y,對于x的每一個確定的值,y都有唯一的值與其對應,那么就說y是x的函數,x是自變量,進而得出答案.【詳解】解:A、汽車在勻速行駛過程中,油箱的余油量y(升)是行駛時間t(小時)的函數,故此選項不合題意;B、y表示一個正數x的平方根,y與x之間的關系,兩個變量之間的關系不能看成函數關系,故此選項符合題意;C、電壓一定時,通過某電阻的電流強度I(單位:安)是電阻R(單位:歐姆)的函數,故本選項不合題意;D、垂直向上拋一個小球,小球離地的高度h(單位:米)是時間t(單位:秒)的函數,故本選項不合題意.故選:B.此題主要考查了函數的定義,正確把握函數定義是解題關鍵.對于自變量的每一個確定的值,函數值有且只有一個值與之對應,即一一對應.7、B【解析】

過點B作BM⊥FD于點M,根據題意可求出BC的長度,然后在△EFD中可求出∠EDF=60°,進而可得出答案.【詳解】解:過點B作BM⊥FD于點M,在△ACB中,∠ACB=90°,∠A=45°,AC=12,∴BC=AC=12.∵AB∥CF,∴BM=BC×sin45°=CM=BM=12,在△EFD中,∠F=90°,∠E=30°,∴∠EDF=60°,∴MD=BM÷tan60°=,∴CD=CM﹣MD=12﹣.故選B.本題考查了解直角三角形,難度較大,解答此類題目的關鍵根據題意建立直角三角形利用所學的三角函數的關系進行解答.8、D【解析】

已知AB∥CD,可根據有一組邊平行且相等的四邊形是平行四邊形來判定,也可根據兩組對邊分別平行的四邊形是平行四邊形來判定.【詳解】∵在四邊形ABCD中,AB∥CD,∴可添加的條件是:AB=CD,∴四邊形ABCD是平行四邊形(一組對邊平行且相等的四邊形是平行四邊形),故選項A不符合題意;∵AB∥CD,∴∠ABD=∠CDB,在△AOB和△COD中,∴△AOB≌△COD(ASA),∴AB=CD,∴四邊形ABCD為平行四邊形,故選項B不符合題意;∵∠BCD+∠ADC=180°,∴AD∥BC,∵AB∥CD,∴四邊形ABCD是平行四邊形,故選項C不符合題意;∵AB∥CD,AD=BC無法得出四邊形ABCD是平行四邊形,故選項D符合題意.故選:D.本題考查了平行四邊形的定義、平行四邊形的判定定理;熟練掌握平行四邊形的判定方法是解決問題的關鍵.二、填空題(本大題共5個小題,每小題4分,共20分)9、y=﹣1x【解析】試題分析:根據點在直線上點的坐標滿足方程的關系,把點A的坐標代入函數解析式求出k值即可得解:∵正比例函數y=kx的圖象經過點A(﹣1,1),∴﹣k=1,即k=﹣1.∴正比例函數的解析式為y=﹣1x.10、1【解析】

EF是△ABC的中位線,可得DE∥BC,又BD平分∠ABC交EF于D,則可證得等角,進一步可證得△BDE為等腰三角形,從而求出EB.【詳解】解:∵EF是△ABC的中位線

∴EF∥BC,∠EDB=∠DBC

又∵BD平分∠ABC

∴∠EBD=∠DBC=∠EDB

∴EB=ED=1.

故答案為1.本題考查的是三角形中位線的性質和等腰三角形的性質,比較簡單.11、3080π.【解析】

用大圓的面積減去4個小圓的面積即可得到剩余部分的面積,然后把R和r的值代入計算出對應的代數式的值.【詳解】依題意得:65.41π-17.31π×4=4177.16π-1197.16π=3080π(mm1).答:剩余部分面積為3080πmm1.故答案為:3080π.本題考查了列代數式:把問題中與數量有關的詞語,用含有數字、字母和運算符號的式子表示出來,就是列代數式.也考查了求代數式的值.12、【解析】

直接合并同類二次根式即可.【詳解】原式=(3﹣2)=.故答案為.本題考查的是二次根式的加減法,即二次根式相加減,先把各個二次根式化成最簡二次根式,再把被開方數相同的二次根式進行合并,合并方法為系數相加減,根式不變.13、1【解析】試題分析:直接把點(m,6)代入一次函數y=x+4即可求解.解:∵一次函數y=x+4的圖象經過點(m,6),∴把點(m,6)代入一次函數y=x+4得m+4=6解得:m=1.故答案為1.三、解答題(本大題共5個小題,共48分)14、(1)證明見解析(2)【解析】分析:(1)先根據平行四邊形的性質,得出OD=OB,再根據OE=OB,得出OE=OB=OD,最后根據三角形內角和定理,求得∠OEB+∠OED=90°,即可得出結論.(2)證明△OFD為直角三角形,得出∠OFD=90°.在Rt△CED中,由勾股定理求出CD=1.由三角形面積求出EF=.在Rt△CEF中,根據勾股定理求出CF即可.詳解:(1)證明:∵平行四邊形ABCD,∴OB=OD.∵OB=OE,∴OE=OD.∴∠OED=∠ODE.∵OB=OE,∴∠OBE=∠OEB.∵∠OBE+∠OEB+∠ODE+∠OED=180°,∴∠OEB+∠OED=90°.∴DE⊥BE;(2)解:∵OE=OD,OF2+FD2=OE2,∴OF2+FD2=OD2.∴△OFD為直角三角形,且∠OFD=90°.在Rt△CED中,∠CED=90°,CE=3,DE=4,∴CD2=CE2+DE2.∴CD=1.又∵,∴.在Rt△CEF中,∠CFE=90°,CE=3,,根據勾股定理得:.點睛:本題考查了平行四邊形的性質、三角形的內角和定理及勾股定理等知識,解題的關鍵是求出∠OEB+∠OED=90°,進而利用勾股定理求解.15、(1)(2)3【解析】

(1)本題是一元二次方程,解答該方程可選擇直接用公式法解答.(2)本題為實數的運算,首先把兩個乘法先運算出來,第一個乘法式可以由平方差公式計算,第二個乘法可先把根式化為最簡根式再進行約分,最后加減時,注意合并同類根式.【詳解】(1)解:原方程中a=-1,b=-3,c=2首先用根的判別式判斷該二元一次方程是否有解得:,所以該方程有解由公式可得:即解得(2)原式=故答案為(1)(2)3本題考察了一元二次方程的解法和實數的混合運算,需要注意的是一元二次方程解答直接首先用根的判別式判斷是否有解,在實數運算過程中,先算乘除與乘方后算加減,有括號的先算括號里面的.涉及到根式運算時,務必要化簡根式與合并同類根式16、20,1【解析】

首先由菱形ABCD的對角線AC,BD相交于O,點E,F分別是AD,DC的中點,根據直角三角形斜邊上的中線等于斜邊的一半,可求得AD的長,由三角形中位線定理可求得AC的長,進而可求出菱形的周長,再求出BD的長即可求出菱形的面積.【詳解】∵菱形ABCD的對角線AC,BD相交于點O,∴AC⊥BD,OA=OC,OB=OD,∵點E,F分別是AD,DC的中點,∴OE=AD,EF=AC,∵OE=2.5,EF=3,∴AD=5,AC=6,∴菱形ABCD的周長為:4×5=20;∵AO=AC=3,AD=5,∴DO==4,∴BD=2DO=8,∴菱形ABCD的面積=AC?BD=1.本題考查了菱形的性質、三角形中位線的性質、勾股定理以及直角三角形的性質.注意根據題意求得AC與AD的長是解答此題的關鍵.17、-2.【解析】

先根據分式的運算法則進行計算化簡,再把a=代入化簡后的式中求值即可。【詳解】解:原式當a=時,==-2本題主要考查了分式的化簡求值,解題的關鍵是正確的化簡.18、1.【解析】

先求出BC′,再由圖形折疊特性知,C′F=CF=BC-BF=9-BF,在Rt△C′BF中,運用勾股定理BF2+BC′2=C′F2求解.【詳解】解:∵將長方形ABCD沿EF折疊,使頂點C恰好落在AB邊的中點C′上

∴BC'=AB=3,CF=C'F

在Rt△BC'F中,C'F2=BF2+C'B2,

∴CF2=(9-CF)2+9

∴CF=5

∴BF=1.本題考查折疊問題及勾股定理的應用,同時也考查了列方程求解的能力.解題的關鍵是找出線段的關系.一、填空題(本大題共5個小題,每小題4分,共20分)19、1【解析】根據平方差公式,(+2)(﹣2)=()2﹣22=5﹣4=1.故答案為:1.20、x<-2【解析】

二次根式有意義的條件就是被開方數大于等于1;分式有意義的條件是分母不為1.【詳解】根據題意得:-x-2>1,解得:x<﹣2.故答案為x<﹣2.函數自變量的范圍一般從三個方面考慮:(1)當函數表達式是整式時,自變量可取全體實數;(2)當函數表達式是分式時,考慮分式的分母不能為1;(3)當函數表達式是二次根式時,被開方數為非負數.21、或【解析】

通過計算E到AC的距離即EH的長度為3,所以根據DE的長度有兩種情況:①當點D在H點上方時,②當點D在H點下方時,兩種情況都是過點E作交AC于點E,過點G作交AB于點Q,利用含30°的直角三角形的性質和勾股定理求出AH,DH的長度,進而可求AD的長度,然后利用角度之間的關系證明,再利用等腰三角形的性質求出GQ的長度,最后利用即可求解.【詳解】①當點D在H點上方時,過點E作交AC于點E,過點G作交AB于點Q,,點是中點,.∵,.,,.,,,,,.由折疊的性質可知,,,,.又,.,.,即,.,;②當點D在H點下方時,過點E作交AC于點E,過點G作交AB于點Q,,點是中點,.∵,.,,.,,,,,.由折疊的性質可知,,,,.又,.,.,即,.,,綜上所述,的面積為或.故答案為:或.本題主要考查折疊的性質,等腰三角形的判定及性質,等腰直角三角形的性質,勾股定理,含30°的直角三角形的性質,能夠作出圖形并分情況討論是解題的關鍵.22、1【解析】

解:設甲的影長是x米,∵BC⊥AC,ED⊥AC,∴△ADE∽△ACB,∴,∵CD=1m,BC=1.8m,DE=1.5m,∴,解得:x=1.所以甲的影長是1米.故答案是1.考點:相似三角形的應用.23、75千米/小時【解析】

甲返程的速度為:600÷(14?6)=75km/h,設已車的速度為x,由題意得:600=7x+75,即可求解.【詳解】解:甲返程的速度為:600÷(14?6)=75km/h,設乙車的速度為x,由題意得:600=7x+75,解得:x=75,故答案為75千米/小時.本題考查由圖象理解對應函數關系及其實際意義,應把所有可能出現的情況考慮清楚.二、解答題(本大題共3個小題,共30分)24、(1),;(2)的最小值為【解析】分析:本題的⑴問直接根據坐標來表示⊿的底邊和底邊上的高,利用三角形的面積公式得出函數解析式;本題的⑵抓住四邊形是矩形,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論