




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆云南省曲靖市羅平縣第一中學數學高三第一學期期末聯考模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,在正四棱柱中,,分別為的中點,異面直線與所成角的余弦值為,則()A.直線與直線異面,且 B.直線與直線共面,且C.直線與直線異面,且 D.直線與直線共面,且2.是拋物線上一點,是圓關于直線的對稱圓上的一點,則最小值是()A. B. C. D.3.已知復數z=(1+2i)(1+ai)(a∈R),若z∈R,則實數a=()A. B. C.2 D.﹣24.已知函數的最大值為,若存在實數,使得對任意實數總有成立,則的最小值為()A. B. C. D.5.已知雙曲線:的左右焦點分別為,,為雙曲線上一點,為雙曲線C漸近線上一點,,均位于第一象限,且,,則雙曲線的離心率為()A. B. C. D.6.已知數列的前項和為,且,,則()A. B. C. D.7.若雙曲線的漸近線與圓相切,則雙曲線的離心率為()A.2 B. C. D.8.展開式中x2的系數為()A.-1280 B.4864 C.-4864 D.12809.在平面直角坐標系中,經過點,漸近線方程為的雙曲線的標準方程為()A. B. C. D.10.設是雙曲線的左、右焦點,若雙曲線右支上存在一點,使(為坐標原點),且,則雙曲線的離心率為()A. B. C. D.11.已知,,,是球的球面上四個不同的點,若,且平面平面,則球的表面積為()A. B. C. D.12.復數在復平面內對應的點為則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.一次考試后,某班全班50個人數學成績的平均分為正數,若把當成一個同學的分數,與原來的50個分數一起,算出這51個分數的平均值為,則_________.14.正四面體的各個點在平面同側,各點到平面的距離分別為1,2,3,4,則正四面體的棱長為__________.15.定義在上的偶函數滿足,且,當時,.已知方程在區間上所有的實數根之和為.將函數的圖象向右平移個單位長度,得到函數的圖象,則__________,__________.16.已知,則的值為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的左焦點坐標為,,分別是橢圓的左,右頂點,是橢圓上異于,的一點,且,所在直線斜率之積為.(1)求橢圓的方程;(2)過點作兩條直線,分別交橢圓于,兩點(異于點).當直線,的斜率之和為定值時,直線是否恒過定點?若是,求出定點坐標;若不是,請說明理.18.(12分)在中,角A,B,C的對邊分別是a,b,c,且向量與向量共線.(1)求B;(2)若,,且,求BD的長度.19.(12分)已知函數,且.(1)求的解析式;(2)已知,若對任意的,總存在,使得成立,求的取值范圍.20.(12分)如圖,在三棱錐A-BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,點E,F(E與A,D不重合)分別在棱AD,BD上,且EF⊥AD.求證:(1)EF∥平面ABC;(2)AD⊥AC.21.(12分)直線與拋物線相交于,兩點,且,若,到軸距離的乘積為.(1)求的方程;(2)設點為拋物線的焦點,當面積最小時,求直線的方程.22.(10分)在四棱錐中,底面是邊長為2的菱形,是的中點.(1)證明:平面;(2)設是線段上的動點,當點到平面距離最大時,求三棱錐的體積.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
連接,,,,由正四棱柱的特征可知,再由平面的基本性質可知,直線與直線共面.,同理易得,由異面直線所成的角的定義可知,異面直線與所成角為,然后再利用余弦定理求解.【詳解】如圖所示:連接,,,,由正方體的特征得,所以直線與直線共面.由正四棱柱的特征得,所以異面直線與所成角為.設,則,則,,,由余弦定理,得.故選:B【點睛】本題主要考查異面直線的定義及所成的角和平面的基本性質,還考查了推理論證和運算求解的能力,屬于中檔題.2、C【解析】
求出點關于直線的對稱點的坐標,進而可得出圓關于直線的對稱圓的方程,利用二次函數的基本性質求出的最小值,由此可得出,即可得解.【詳解】如下圖所示:設點關于直線的對稱點為點,則,整理得,解得,即點,所以,圓關于直線的對稱圓的方程為,設點,則,當時,取最小值,因此,.故選:C.【點睛】本題考查拋物線上一點到圓上一點最值的計算,同時也考查了兩圓關于直線對稱性的應用,考查計算能力,屬于中等題.3、D【解析】
化簡z=(1+2i)(1+ai)=,再根據z∈R求解.【詳解】因為z=(1+2i)(1+ai)=,又因為z∈R,所以,解得a=-2.故選:D【點睛】本題主要考查復數的運算及概念,還考查了運算求解的能力,屬于基礎題.4、B【解析】
根據三角函數的兩角和差公式得到,進而可以得到函數的最值,區間(m,n)長度要大于等于半個周期,最終得到結果.【詳解】函數則函數的最大值為2,存在實數,使得對任意實數總有成立,則區間(m,n)長度要大于等于半個周期,即故答案為:B.【點睛】這個題目考查了三角函數的兩角和差的正余弦公式的應用,以及三角函數的圖像的性質的應用,題目比較綜合.5、D【解析】由雙曲線的方程的左右焦點分別為,為雙曲線上的一點,為雙曲線的漸近線上的一點,且都位于第一象限,且,可知為的三等分點,且,點在直線上,并且,則,,設,則,解得,即,代入雙曲線的方程可得,解得,故選D.點睛:本題考查了雙曲線的幾何性質,離心率的求法,考查了轉化思想以及運算能力,雙曲線的離心率是雙曲線最重要的幾何性質,求雙曲線的離心率(或離心率的取值范圍),常見有兩種方法:①求出,代入公式;②只需要根據一個條件得到關于的齊次式,轉化為的齊次式,然后轉化為關于的方程(不等式),解方程(不等式),即可得(的取值范圍).6、C【解析】
根據已知條件判斷出數列是等比數列,求得其通項公式,由此求得.【詳解】由于,所以數列是等比數列,其首項為,第二項為,所以公比為.所以,所以.故選:C【點睛】本小題主要考查等比數列的證明,考查等比數列通項公式,屬于基礎題.7、C【解析】
利用圓心到漸近線的距離等于半徑即可建立間的關系.【詳解】由已知,雙曲線的漸近線方程為,故圓心到漸近線的距離等于1,即,所以,.故選:C.【點睛】本題考查雙曲線離心率的求法,求雙曲線離心率問題,關鍵是建立三者間的方程或不等關系,本題是一道基礎題.8、A【解析】
根據二項式展開式的公式得到具體為:化簡求值即可.【詳解】根據二項式的展開式得到可以第一個括號里出項,第二個括號里出項,或者第一個括號里出,第二個括號里出,具體為:化簡得到-1280x2故得到答案為:A.【點睛】求二項展開式有關問題的常見類型及解題策略:(1)求展開式中的特定項.可依據條件寫出第項,再由特定項的特點求出值即可.(2)已知展開式的某項,求特定項的系數.可由某項得出參數項,再由通項寫出第項,由特定項得出值,最后求出其參數.9、B【解析】
根據所求雙曲線的漸近線方程為,可設所求雙曲線的標準方程為k.再把點代入,求得k的值,可得要求的雙曲線的方程.【詳解】∵雙曲線的漸近線方程為設所求雙曲線的標準方程為k.又在雙曲線上,則k=16-2=14,即雙曲線的方程為∴雙曲線的標準方程為故選:B【點睛】本題主要考查用待定系數法求雙曲線的方程,雙曲線的定義和標準方程,以及雙曲線的簡單性質的應用,屬于基礎題.10、D【解析】
利用向量運算可得,即,由為的中位線,得到,所以,再根據雙曲線定義即可求得離心率.【詳解】取的中點,則由得,即;在中,為的中位線,所以,所以;由雙曲線定義知,且,所以,解得,故選:D【點睛】本題綜合考查向量運算與雙曲線的相關性質,難度一般.11、A【解析】
由題意畫出圖形,求出多面體外接球的半徑,代入表面積公式得答案.【詳解】如圖,取BC中點G,連接AG,DG,則,,分別取與的外心E,F,分別過E,F作平面ABC與平面DBC的垂線,相交于O,則O為四面體的球心,由,得正方形OEGF的邊長為,則,四面體的外接球的半徑,球O的表面積為.故選A.【點睛】本題考查多面體外接球表面積的求法,考查空間想象能力與思維能力,是中檔題.12、B【解析】
求得復數,結合復數除法運算,求得的值.【詳解】易知,則.故選:B【點睛】本小題主要考查復數及其坐標的對應,考查復數的除法運算,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】
根據均值的定義計算.【詳解】由題意,∴.故答案為:1.【點睛】本題考查均值的概念,屬于基礎題.14、【解析】
不妨設點A,D,C,B到面的距離分別為1,2,3,4,平面向下平移兩個單位,與正四面體相交,過點D,與AB,AC分別相交于點E,F,根據題意F為中點,E為AB的三等分點(靠近點A),設棱長為a,求得,再用余弦定理求得:,從而求得,再根據頂點A到面EDF的距離為,得到,然后利用等體積法求解,【詳解】不妨設點A,D,C,B到面的距離分別為1,2,3,4,平面向下平移兩個單位,與正四面體相交,過點D,與AB,AC分別相交于點E,F,如圖所示:由題意得:F為中點,E為AB的三等分點(靠近點A),設棱長為a,,頂點D到面ABC的距離為所以,由余弦定理得:,所以,所以,又頂點A到面EDF的距離為,所以,因為,所以,解得,故答案為:【點睛】本題主要考查幾何體的切割問題以及等體積法的應用,還考查了轉化化歸的思想和空間想象,運算求解的能力,屬于難題,15、24【解析】
根據函數為偶函數且,所以的周期為,的實數根是函數和函數的圖象的交點的橫坐標,在平面直角坐標系中畫出函數圖象,根據函數的對稱性可得所有實數根的和為,從而可得參數的值,最后求出函數的解析式,代入求值即可.【詳解】解:因為為偶函數且,所以的周期為.因為時,,所以可作出在區間上的圖象,而方程的實數根是函數和函數的圖象的交點的橫坐標,結合函數和函數在區間上的簡圖,可知兩個函數的圖象在區間上有六個交點.由圖象的對稱性可知,此六個交點的橫坐標之和為,所以,故.因為,所以.故.故答案為:;【點睛】本題考查函數的奇偶性、周期性、對稱性的應用,函數方程思想,數形結合思想,屬于難題.16、【解析】
先求,再根據的范圍求出即可.【詳解】由題可知,故.故答案為:.【點睛】本題考查分段函數函數值的求解,涉及對數的運算,屬基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)直線過定點【解析】
(1),再由,解方程組即可;(2)設,,由,得,由直線MN的方程與橢圓方程聯立得到根與系數的關系,代入計算即可.【詳解】(1)由題意知:,又,且解得,,∴橢圓方程為,(2)當直線的斜率存在時,設其方程為,設,,由,得.則,(*)由,得,整理可得(*)代入得,整理可得,又,∴,即,∴直線過點當直線的斜率不存在時,設直線的方程為,,,其中,∴,由,得,所以∴當直線的斜率不存在時,直線也過定點綜上所述,直線過定點.【點睛】本題考查求橢圓的標準方程以及直線與橢圓位置關系中的定點問題,在處理直線與橢圓的位置關系的大題時,一般要利用根與系數的關系來求解,本題是一道中檔題.18、(1)(2)【解析】
(1)根據共線得到,利用正弦定理化簡得到答案.(2)根據余弦定理得到,,再利用余弦定理計算得到答案.【詳解】(1)∵與共線,∴.即,∴即,∵,∴,∵,∴.(2),,,在中,由余弦定理得:,∴.則或(舍去).∴,∵∴.在中,由余弦定理得:,∴.【點睛】本題考查了向量共線,正弦定理,余弦定理,意在考查學生的綜合應用能力.19、(1);(2)【解析】
(1)由,可求出的值,進而可求得的解析式;(2)分別求得和的值域,再結合兩個函數的值域間的關系可求出的取值范圍.【詳解】(1)因為,所以,解得,故.(2)因為,所以,所以,則,圖象的對稱軸是.因為,所以,則,解得,故的取值范圍是.【點睛】本題考查了三角函數的恒等變換,考查了二次函數及三角函數值域的求法,考查了學生的計算求解能力,屬于中檔題.20、(1)見解析(2)見解析【解析】試題分析:(1)先由平面幾何知識證明,再由線面平行判定定理得結論;(2)先由面面垂直性質定理得平面,則,再由AB⊥AD及線面垂直判定定理得AD⊥平面ABC,即可得AD⊥AC.試題解析:證明:(1)在平面內,因為AB⊥AD,,所以.又因為平面ABC,平面ABC,所以EF∥平面ABC.(2)因為平面ABD⊥平面BCD,平面平面BCD=BD,平面BCD,,所以平面.因為平面,所以.又AB⊥AD,,平面ABC,平面ABC,所以AD⊥平面ABC,又因為AC平面ABC,所以AD⊥AC.點睛:垂直、平行關系證明中應用轉化與化歸思想的常見類型:(1)證明線面、面面平行,需轉化為證明線線平行;(2)證明線面垂直,需轉化為證明線線垂直;(3)證明線線垂直,需轉化為證明線面垂直.21、(1);(2)【解析】
(1)設出兩點的坐標,由距離之積為16,可得.利用向量的數
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 電力安全生產風險
- 股權激勵居間合同范例
- 糖尿病的臨床護理途徑
- 商鋪轉讓居間協議樣本
- 跨行業攜手!房地產行業協會與科技企業簽訂創新合同合作
- 2024珠海市南方愛迪技工學校工作人員招聘考試及答案
- 2024沿河土家族自治縣中等職業學校工作人員招聘考試及答案
- 2024河南省工商行政管理學校工作人員招聘考試及答案
- 2024河北航空管理中等專業學校工作人員招聘考試及答案
- 互聯網技術服務框架合同
- 2025年中國短圓柱滾子軸承市場調查研究報告
- 湖北省十一校2024-2025學年高三第二次聯考數學試卷(解析版)
- 《手工制作》課件-幼兒園掛飾
- 鼓勵員工發現安全隱患的獎勵制度
- 蘇教版一年級下冊數學全冊教學設計(配2025年春新版教材)
- 人武專干考試題型及答案
- 2025屆高三化學二輪復習 化學反應原理綜合 課件
- 2025年北京五湖四海人力資源有限公司招聘筆試參考題庫含答案解析
- 常見的酸和堿第2課時酸的化學性質 2024-2025學年九年級化學人教版(2024)下冊
- 歡樂購物街-認識人民幣(說課稿)-2024-2025學年人教版數學一年級下冊
- 2025年中國南方航空股份有限公司招聘筆試參考題庫含答案解析
評論
0/150
提交評論