2025屆黑龍江省安達市第七中學高二上數學期末聯考模擬試題含解析_第1頁
2025屆黑龍江省安達市第七中學高二上數學期末聯考模擬試題含解析_第2頁
2025屆黑龍江省安達市第七中學高二上數學期末聯考模擬試題含解析_第3頁
2025屆黑龍江省安達市第七中學高二上數學期末聯考模擬試題含解析_第4頁
2025屆黑龍江省安達市第七中學高二上數學期末聯考模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆黑龍江省安達市第七中學高二上數學期末聯考模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若函數的導函數為偶函數,則的解析式可能是()A. B.C. D.2.設是兩個非零向量,則“”是“夾角為鈍角”的A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件3.已知數列是等比數列,且,則的值為()A.3 B.6C.9 D.364.已知實數滿足,則的取值范圍()A.-1m B.-1m<0或0<mC.m或m-1 D.m1或m-15.圓與圓的公切線的條數為()A.1 B.2C.3 D.46.已知橢圓與雙曲線有相同的焦點,則的值為A. B.C. D.7.某幾何體的三視圖如圖所示,則其對應的幾何體是A. B.C. D.8.雅言傳承文明,經典浸潤人生.某市舉辦“中華經典誦寫講大賽”,大賽分為四類:“誦讀中國”經典誦讀大賽、“詩教中國”詩詞講解大賽、“筆墨中國”漢字書寫大賽、“印記中國”學生篆刻大賽.某人決定從這四類比賽中任選兩類參賽,則“誦讀中國”被選中的概率為()A. B.C. D.9.已知直線與圓交于兩點,過分別作的垂線與軸交于兩點,則A.2 B.3C. D.410.過雙曲線-=1(a>0,b>0)的左焦點F(-c,0)作圓O:x2+y2=a2的切線,切點為E,延長FE交雙曲線于點P,若E為線段FP的中點,則雙曲線的離心率為()A. B.C.+1 D.11.命題:“?x<1,x2<1”的否定是()A.?x≥1,x2<1 B.?x≥1,x2≥1C.?x<1,x2≥1 D.?x<1,x2≥112.已知向量,則“”是“”的()A充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.某校周五的課程表設計中,要求安排8節課(上午4節、下午4節),分別安排語文、數學、英語、物理、化學、生物、政治、歷史各一節,其中生物只能安排在第一節或最后一節,數學和英語在安排時必須相鄰(注:上午的最后一節與下午的第一節不記作相鄰),則周五的課程順序的編排方法共有______14.若函數在處有極值,則的值為___________.15.我國古代數學名著《算法統宗》中有如下問題:“遠望巍巍塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數是上一層燈數的2倍,則塔的頂層燈數為_____________16.若方程表示焦點在y軸上的雙曲線,則實數k的取值范圍是______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知在數列中,,且.(1)求,,并證明數列是等比數列;(2)求的通項公式及前n項和.18.(12分)已知等比數列的公比,,.(1)求數列的通項公式;(2)令,若,求滿足條件的最大整數n.19.(12分)動點M到點的距離比它到直線的距離小,記M的軌跡為曲線C.(1)求C的方程;(2)已知圓,設P,A,B是C上不同的三點,若直線PA,PB均與圓D相切,若P的縱坐標為,求直線AB的方程.20.(12分)已知橢圓C對稱中心在原點,對稱軸為坐標軸,且,兩點(1)求橢圓C的方程;(2)設M、N分別為橢圓與x軸負半軸、y軸負半軸的交點,P為橢圓上在第一象限內一點,直線PM與y軸交于點S,直線PN與x軸交于點T,求證:四邊形MSTN的面積為定值21.(12分)如圖,在四棱錐P﹣ABCD中,PA⊥平面ABCD,AB⊥AD,BC//AD,AD=2BC=2PA=2AB=2,E,F,G分別為線段AD,DC,PB的中點.(1)證明:直線PF//平面ACG;(2)求直線PD與平面ACG所成角的正弦值.22.(10分)進入11月份,大學強基計劃開始報名,某“五校聯盟”統一對五校高三學生進行綜合素質測試,在所有參加測試的學生中隨機抽取了部分學生的成績,得到如圖2所示的成績頻率分布直方圖:(1)估計五校學生綜合素質成績的平均值和中位數;(每組數據用該組的區間中點值表示)(2)某校決定從本校綜合素質成績排名前6名同學中,推薦3人參加強基計劃考試,若已知6名同學中有4名理科生,2名文科生,試求這3人中含文科生的概率.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】根據題意,求出每個函數的導函數,進而判斷答案.【詳解】對A,,為奇函數;對B,,為奇函數;對C,,為偶函數;對D,,既不是奇函數也不是偶函數.故選:C.2、B【解析】因為時,夾角為鈍角或平角;而當夾角為鈍角時,成立,所以“”是“夾角為鈍角”的必要不充分條件.故選B考點:1向量的數量積;2充分必要條件3、C【解析】應用等比中項的性質有,結合已知求值即可.【詳解】由等比數列的性質知:,,,所以,又,所以.故選:C4、C【解析】把看成動點與所確定的直線的斜率,動點在所給曲線上.【詳解】就是點,所確定的直線的斜率,而在上,因為,.故選:C5、D【解析】公切線條數與圓與圓的位置關系是相關的,所以第一步需要判斷圓與圓的位置關系.【詳解】圓的圓心坐標為,半徑為3;圓的圓心坐標為,半徑為1,所以兩圓的心心距為,所以兩圓相離,公切線有4條.故選:D.6、C【解析】根據題意可知,結合的條件,可知,故選C考點:橢圓和雙曲線性質7、A【解析】根據三視圖即可還原幾何體.【詳解】根據三視圖,特別注意到三視圖中對角線的位置關系,容易判斷A正確.【點睛】本題主要考查了三視圖,屬于中檔題.8、B【解析】由已知條件得基本事件總數為種,符合條件的事件數為3中,由古典概型公式直接計算即可.【詳解】從四類比賽中選兩類參賽,共有種選擇,其中“誦讀中國”被選中的情況有3種,即“誦讀中國”和“詩教中國”,“誦讀中國”和“筆墨中國”,“誦讀中國”和“印記中國”,由古典概型公式可得,故選:.9、D【解析】由題意,圓心到直線的距離,∴,∵直線∴直線的傾斜角為,∵過分別作的垂線與軸交于兩點,∴,故選D.10、A【解析】設F′為雙曲線的右焦點,連接OE,PF′,根據圓的切線性質和三角形中位線得到|OE|=a,|PF′|=2a,利用雙曲線的定義求得|PF|=4a,得到|EF|=2a,在Rt△OEF中,利用勾股定理建立關系即可求得離心率的值.【詳解】不妨設E在x軸上方,F′為雙曲線的右焦點,連接OE,PF′,如圖所示:因為PF是圓O的切線,所以OE⊥PE,又E,O分別為PF,FF′的中點,所以|OE|=|PF′|,又|OE|=a,所以|PF′|=2a,根據雙曲線的定義,|PF|-|PF′|=2a,所以|PF|=4a,所以|EF|=2a,在Rt△OEF中,|OE|2+|EF|2=|OF|2,即a2+4a2=c2,所以e=,故選A.【點睛】本題考查雙曲線的離心率的求法,聯想到雙曲線的另一個焦點,作輔助線,利用雙曲線的定義是求解離心率問題的有效方法.11、C【解析】將特稱命題否定為全稱命題即可【詳解】根據含有量詞的命題的否定,則“?x<1,x2<1”的否定是“?x<1,x2≥1”.故選:C.12、A【解析】根據得出,根據充分必要條件的定義可判斷.【詳解】解:∵,向量,,∴,即,根據充分必要條件的定義可判斷:“”是“”的充分不必要條件,故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、2400種【解析】分三步,第一步:根據題意從第一個位置和最后一個位置選一個位置安排生物,第二步:將數學和英語捆綁排列,第三步:將剩下的5節課全排列,最后利用分步乘法計數原理求解.【詳解】分步排列,第一步:因為由題意知生物只能出現在第一節或最后一節,所以從第一個位置和最后一個位置選一個位置安排生物,有(種)編排方法;第二步:因為數學和英語在安排時必須相鄰,注意數學和英語之間還有一個排列,所以有(種)編排方法;第三步:剩下的5節課安排5科課程,有(種)編排方法根據分步乘法計數原理知共有(種)編排方法故答案為:2400種14、2或6【解析】由解析式得到導函數,結合是函數極值點,即可求的值.【詳解】由,得,因為函數在處有極值,所以,即,解得2或6.經檢驗,2或6滿足題意.故答案為:2或6.15、3【解析】分析:設塔的頂層共有a1盞燈,則數列{an}公比為2的等比數列,利用等比數列前n項和公式能求出結果詳解:設塔的頂層共有a1盞燈,則數列{an}公比為2的等比數列,∴S7==381,解得a1=3.故答案為3.點睛:本題考查了等比數列的通項公式與求和公式,考查了推理能力與計算能力.16、【解析】由題可得,即求.【詳解】因為方程表示焦點在軸上的雙曲線,則,解得.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),,證明見解析(2),【解析】(1)根據遞推關系求出,,對遞推公式變形,即可得證;(2)結合(1)求得通項公式,分組求和.【小問1詳解】因為,且所以,,∵,∴,∵,∴,且,∴數列是等比數列.【小問2詳解】由(1)可知是以為首項,以3為公比的等比數列,即,即;.18、(1)(2)【解析】(1)由等比數列的性質可得,結合條件求出,得出公比,從而得出通項公式.(2)由(1)可得,再求出的前項和,從而可得出答案.【小問1詳解】由題意可知,有,,得或∴或又,∴∴【小問2詳解】,∴∴,又單調遞增,所以滿足條件的的最大整數為19、(1)(2)【解析】(1)由拋物線的定義可得結論;(2)設,得PA的兩點式方程為,由在拋物線上,化簡直線方程為,然后由圓心到切線的距離等于半徑得出的關系式,并利用得出點滿足的等式,同理設得方程,最后由直線方程的定義可得直線方程【小問1詳解】由題意得動點M到點的距離等于到直線的距離,所以曲線C是以為焦點,為準線的拋物線.設,則,于是C的方程為.【小問2詳解】由(1)可知,設,PA的兩點式方程為.由,,可得.因為PA與D相切,所以,整理得.因為,可得.設,同理可得于是直線AB的方程為.20、(1)(2)證明見解析【解析】(1)設橢圓方程為,利用待定系數法求得的值,即可得出答案;(2)設,,,易得,分別求出直線PM和直線PN的方程,從而可求出的坐標,再根據即可得出答案.【小問1詳解】解:依題意設橢圓方程為,將,代入得,解得得,,∴所求橢圓方程為;【小問2詳解】證明:設,,,,P點坐標滿足,即,直線PM:,可得,直線PN:,可得,.21、(1)證明見解析(2)【解析】(1)連接EC,設EB與AC相交于點O,結合已知條件利用線面平行的判定定理可證得OG//平面PEF,再由三角形中位線定理結合線面垂直的判定定理可得AC//平面PEF,從而由面面垂直的判定可得平面PEF//平面GAC,進而可證得結論,(2)由已知可證得PA、AB、AD兩兩互相垂直,以A為原點,AB,AD,AP所在的直線為x軸,y軸,z軸,建立空間直角坐標系,利用空間向量求解即可【小問1詳解】證明:連接EC,設EB與AC相交于點O,如圖,因為BC//AD,且,AB⊥AD,所以四邊形ABCE為矩形,所以O為EB的中點,又因為G為PB的中點,所以OG為△PBE的中位線,即OG∥PE,因為OG平面PEF,PE?平面PEF,所以OG//平面PEF,因為E,F分別為線段AD,DC的中點,所以EF//AC,因為AC平面PEF,EF?平面PEF,所以AC//平面PEF,因為OG?平面GAC,AC?平面GAC,AC∩OG=O,所以平面PEF//平面GAC,因為PF?平面PEF,所以PF//平面GAC.【小問2詳解】因為PA⊥底面ABCD,AB?平面ABCD,AD?平面ABCD,所以PA⊥AB,PA⊥AD,因為AB⊥AD,所以PA、AB、AD兩兩互相垂直,以A為原點,AB,AD,AP所在的直線為x軸,y軸,z軸,建立空間直角坐標系,如圖所示:則A(0,0,0),,C(1,1,0),D(0,2,0),P(0,0,1),所以,設平面ACG的法向量為,則,所以,令x=1,可得y=﹣1,z=﹣1,所以,設直線PD與平面ACG所成角為θ,則,所以直線PD與平面ACG所成角的正弦值為.22、(1)平均值為74.6分,中位數為75分;(2).【解析】(1)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論