




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆江西省贛州市十五縣市高二上數學期末檢測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.“”是“直線和直線垂直”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件2.已知為定義在R上的偶函數函數,且在單調遞減.若關于的不等式在上恒成立,則實數m的取值范圍是()A. B.C. D.3.學校開設甲類選修課3門,乙類選修課4門,從中任選3門,甲乙兩類課程都有選擇的不同選法種數為()A.24 B.30C.60 D.1204.已知拋物線x2=4y上有一條長為6的動弦AB,則AB的中點到x軸的最短距離為()A. B.C.1 D.25.已知是拋物線上的點,F是拋物線C的焦點,若,則()A.1011 B.2020C.2021 D.20226.已知隨機變量X服從二項分布X~B(4,),()A. B.C. D.7.原點到直線的距離的最大值為()A. B.C. D.8.拋物線的焦點到準線的距離是A. B.1C. D.9.已知數列的前項和,且,則()A. B.C. D.10.已知雙曲線左右焦點為,過的直線與雙曲線的右支交于,兩點,且,若線段的中垂線過點,則雙曲線的離心率為()A.3 B.2C. D.11.在中,角、、所對的邊分別是、、.已知,,且滿足,則的取值范圍為()A. B.C. D.12.若點在橢圓上,則該橢圓的離心率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知數列的前4項依次為,,,,則的一個通項公式為________14.與雙曲線有共同的漸近線,并且經過點的雙曲線方程是______15.函數,則函數在處切線的斜率為_______________.16.若直線與直線平行,則實數m的值為____________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在平行四邊形ABCD中,AB=1,BC=2,∠ABC=60°,四邊形ACEF為正方形,且平面ABCD⊥平面ACEF(1)證明:AB⊥CF;(2)求點C到平面BEF距離;(3)求平面BEF與平面ADF夾角的正弦值18.(12分)如圖,在三棱錐中,,點P為線段MC上的點(1)若平面PAB,試確定點P的位置,并說明理由;(2)若,,,求三棱錐的體積19.(12分)已知函數.(I)當時,求曲線在處的切線方程;(Ⅱ)若當時,,求的取值范圍.20.(12分)已知函數在時有極值0.(1)求函數的解析式;(2)記,若函數有三個零點,求實數的取值范圍.21.(12分)某快遞公司近60天每天攬件數量的頻率分布直方圖如下圖所示(同一組數據用該區間的中點值作代表).(1)求這60天每天包裹數量的平均值和中位數;(2)在這60天中包裹件數在和的兩組中,用分層抽樣的方法抽取30件,求在這兩組中應分別抽取多少件?22.(10分)已知對于,函數有意義,關于k的不等式成立.(1)若為假命題,求k的取值范圍;(2)若p是q的必要不充分條件,求m的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】因為直線和直線垂直,所以或,再根據充分必要條件的定義判斷得解.【詳解】因為“直線和直線垂直,所以或.當時,直線和直線垂直;當直線和直線垂直時,不一定成立.所以是直線和直線垂直的充分不必要條件,故選:A2、C【解析】由條件利用函數的奇偶性和單調性,可得對恒成立,轉化為且對恒成立.求得相應的最大值和最小值,從而求得的范圍【詳解】定義在上的函數為偶函數,且在上遞減,在上單調遞增,若不等式在上恒成立,即在上恒成立在上恒成立,即在上恒成立,即且在上恒成立令,則,,,,在上遞增,上遞減,令,當時,,在上遞減,故可知,解得,所以實數m的取值范圍是故選:C3、B【解析】利用組合數計算出正確答案.【詳解】甲乙兩類課程都有選擇的不同選法種數為.故選:B4、D【解析】由題意知,拋物線的準線l:y=-1,過A作AA1⊥l于A1,過B作BB1⊥l于B1,設弦AB的中點為M,過M作MM1⊥l于M1.則|MM1|=.|AB|≤|AF|+|BF|(F為拋物線的焦點),即|AF|+|BF|≥6,|AA1|+|BB1|≥6,2|MM1|≥6,|MM1|≥3,故M到x軸的距離d≥2.5、C【解析】結合向量坐標運算以及拋物線的定義求得正確答案.【詳解】設,因為是拋物線上的點,F是拋物線C的焦點,所以,準線為:,因此,所以,即,由拋物線的定義可得,所以故選:C6、D【解析】利用二項分布概率計算公式,計算出正確選項.【詳解】∵隨機變量X服從二項分布X~B(4,),∴.故選:D.7、C【解析】求出直線過的定點,當時,原點到直線距離最大,則可求出原點到直線距離的最大值;【詳解】因為可化為,所以直線過直線與直線交點,聯立可得所以直線過定點,當時,原點到直線距離最大,最大距離即為,此時最大值為,故選:C.8、D【解析】,,所以拋物線的焦點到其準線的距離是,故選D.9、C【解析】由an=Sn-Sn-1,【詳解】解:因為,所以,,兩式相減可得,即,因為,,所以,即,時,也滿足上式,所以,所以,故選:C.10、C【解析】由雙曲線的定義得出中各線段長(用表示),然后通過余弦定理得出的關系式,變形后可得離心率【詳解】由題意又則有:可得:,,中,中.可得:解得:則有:故選:C11、D【解析】利用正弦定理邊角互化思想化簡得出,利用余弦定理化簡得出,結合,根據函數在上的單調性可求得的取值范圍.【詳解】且,所以,由正弦定理得,即,,,所以,,則,由余弦定理得,,則,由于雙勾函數在上單調遞增,則,即,所以,.因此,的取值范圍為.故選:D.【點睛】本題考查三角形內角余弦值的取值范圍的求解,考查了余弦定理以及正弦定理邊角互化思想的應用,考查計算能力,屬于中等題.12、C【解析】根據給定條件求出即可計算橢圓的離心率.【詳解】因點在橢圓,則,解得,而橢圓長半軸長,所以橢圓離心率.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、(答案不唯一)【解析】觀察數列前幾項,找出規律即可寫出通項公式.【詳解】根據數列前幾項,先不考慮正負,可知,再由奇數項為負,偶數項為正,可得到一個通項公式,故答案為:(不唯一)14、【解析】設雙曲線的方程為,將點代入方程可求的值,從而可得結果【詳解】設與雙曲線有共同的漸近線的雙曲線的方程為,該雙曲線經過點,所求的雙曲線方程為:,整理得故答案為【點睛】本題考查雙曲線的方程與簡單性質,意在考查靈活應用所學知識解答問題的能力,屬于中檔題.與共漸近線的雙曲線方程可設為,只需根據已知條件求出即可.15、【解析】根據導數的幾何意義求解即可.【詳解】解:因為,所以,所以,所以函數在處切線的斜率為故答案為:16、【解析】利用兩條直線平行的充要條件,列式求解即可【詳解】解:因為直線與直線平行,所以,解得故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2);(3).【解析】(1)利用余弦定理計算AC,再證明即可推理作答.(2)以點A為原點,射線AB,AC,AF分別為x,y,z軸非負半軸建立空間直角坐標系,借助空間向量計算點C到平面BEF的距離.(3)利用(2)中坐標系,用向量數量積計算兩平面夾角余弦值,進而求解作答.小問1詳解】在中,AB=1,BC=2,∠ABC=60°,由余弦定理得,,即,有,則,即,因平面ABCD⊥平面ACEF,平面平面,平面,于是得平面,又平面,所以.【小問2詳解】因四邊形ACEF為正方形,即,由(1)知兩兩垂直,以點A為原點,射線AB,AC,AF分別為x,y,z軸非負半軸建立空間直角坐標系,如圖,,,設平面的一個法向量,則,令,得,而,于是得點C到平面BEF的距離,所以點C到平面BEF的距離為.【小問3詳解】由(2)知,,設平面的一個法向量,則,令,得,,設平面BEF與平面ADF夾角為,,則有,,所以平面BEF與平面ADF夾角的正弦值為.【點睛】易錯點睛:空間向量求二面角時,一是兩平面的法向量的夾角不一定是所求的二面角,二是利用方程思想進行向量運算,要認真細心,準確計算18、(1)點P為MC中點,理由見解析(2)【解析】(1)根據平面PAB,得到線線垂直,再得到點P的位置;(2)根據平面PAB,將問題轉化為計算即可.【小問1詳解】∵平面PAB,平面ABP,∴又∵在中,,∴P為MC中點.∴若平面PAB,則點P為MC中點【小問2詳解】當P為中點時,在中,,,∴,同理可得∴在中,,∵由(1)知平面PAB,∴∴三棱錐的體積為19、(1)(2)【解析】(Ⅰ)先求的定義域,再求,,,由直線方程的點斜式可求曲線在處的切線方程為(Ⅱ)構造新函數,對實數分類討論,用導數法求解.試題解析:(I)定義域為.當時,,曲線在處的切線方程為(II)當時,等價于設,則,(i)當,時,,故在上單調遞增,因此;(ii)當時,令得.由和得,故當時,,在單調遞減,因此.綜上,的取值范圍是【考點】導數的幾何意義,利用導數判斷函數的單調性【名師點睛】求函數的單調區間的方法:(1)確定函數y=f(x)定義域;(2)求導數y′=f′(x);(3)解不等式f′(x)>0,解集在定義域內的部分為單調遞增區間;(4)解不等式f′(x)<0,解集在定義域內的部分為單調遞減區間20、(1)(2)【解析】(1)求出函數的導函數,由在時有極值0,則,兩式聯立可求常數a,b的值,從而得解析式;(2)利用導數研究函數的單調性、極值,根據函數圖象的大致形狀可求出參數的取值范圍.【小問1詳解】由可得,因為在時有極值0,所以,即,解得或,當時,,函數在R上單調遞增,不滿足在時有極值,故舍去.所以常數a,b的值分別為.所以.【小問2詳解】由(1)可知,,令,解得,當或時,當時,,的遞增區間是和,單調遞減區間為,當有極大值,當有極小值,要使函數有三個零點,則須滿足,解得.21、(1)平均數和中位數都為260件;(2)在的件數為,在的件數為.【解析】(1)由每組頻率乘以組中值相加即可得平均數,設中位數為,由落在區間內的頻率為0.5可得結果;(2)先得頻率分別為0.1,0.5,由分層抽樣的概念即可得結果.【詳解】(1)每天包裹數量的平均數為;設中位數為,易知,則,解得.所以公司每天包裹的平均數和中位數都為260件.(2)件數在,的頻率分別為0.1,0.5頻率之比為1:5,所抽取的30件中,在的件數為,在的件數為.22、(1)(2)【解析】(1)由與的真假相反
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 積累經驗的衛生管理證書考試分析試題及答案
- 藥劑學研究中的數據分析方法試題及答案
- 網絡規劃設計師考試的復習資源選擇試題及答案
- 藥劑類考試修習建議試題及答案
- 滬教版五年級語文下學期期中綜合復習名校習題
- 2025-2030宣傳品產業行業市場現狀供需分析及投資評估規劃分析研究報告
- 2025-2030實木沙發行業市場現狀供需分析及重點企業投資評估規劃分析研究報告
- 2025-2030塑料四合一文件架行業發展分析及投資價值研究咨詢報告
- 2025-2030城市畫筆行業市場現狀供需分析及投資評估規劃分析研究報告
- 2025-2030國內飲用水行業深度分析及競爭格局與發展前景預測研究報告
- 2024-2025學年人教版初中物理八年級下冊期中檢測卷(第七章-第九章)
- 維修人員管理獎懲制度3篇1
- 國家糧食和物資儲備局招聘考試真題2024
- 產品推廣活動策劃方案詳解
- 手衛生知識宣教培訓
- 上門催收技巧培訓
- 【初中地理】《日本》課件-2024-2025學年湘教版初中地理七年級下冊
- 智能定時開關插座設計與制作
- 醫院患者滿意度調查工作制度
- 洛索洛芬鈉口服溶液-藥品臨床應用解讀
- 18《井岡翠竹》公開課一等獎創新教學設計
評論
0/150
提交評論