




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
新疆博爾塔拉蒙古自治州第五師高級中學2025屆高二數學第一學期期末監測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知拋物線,則拋物線的焦點到其準線的距離為()A. B.C. D.2.如圖,在四面體中,,,兩兩垂直,已知,,則直線與平面所成角的正弦值為()A. B.C. D.3.若實數,滿足約束條件,則的最小值為()A.-3 B.-2C. D.14.某高校甲、乙兩位同學大學四年選修課程的考試成績等級(選修課的成績等級分為1,2,3,4,5,共五個等級)的條形圖如圖所示,則甲成績等級的中位數與乙成績等級的眾數分別是()A.3,5 B.3,3C.3.5,5 D.3.5,45.已知橢圓的左右焦點分別為,,過C上的P作y軸的垂線,垂足為Q,若四邊形是菱形,則C的離心率為()A. B.C. D.6.某公司要建造一個長方體狀的無蓋箱子,其容積為48m3,高為3m,如果箱底每1m2的造價為15元,箱壁每1m2造價為12元,則箱子的最低總造價為()A.72元 B.300元C.512元 D.816元7.有7名同學參加百米競賽,預賽成績各不相同,取前3名參加決賽,小明同學已經知道了自己的成績,為了判斷自己是否能進入決賽,他還需要知道7名同學成績的()A.平均數 B.眾數C.中位數 D.方差8.點M在圓上,點N在直線上,則|MN|的最小值是()A. B.C. D.19.某高中學校高二和高三年級共有學生人,為了解該校學生的視力情況,現采用分層抽樣的方法從三個年級中抽取一個容量為的樣本,其中高一年級抽取人,則高一年級學生人數為()A. B.C. D.10.若正三棱柱的所有棱長都相等,D是的中點,則直線AD與平面所成角的正弦值為A. B.C. D.11.過雙曲線的右頂點作斜率為的直線,該直線與雙曲線的兩條漸近線的交點分別為.若,則雙曲線的離心率是A. B.C. D.12.已知對稱軸為坐標軸的雙曲線的兩漸近線方程為,若雙曲線上有一點,使,則雙曲線的焦點()A.在軸上 B.在軸上C.當時在軸上 D.當時在軸上二、填空題:本題共4小題,每小題5分,共20分。13.已知數列滿足,,則數列的前n項和______14.已知兩點和則以為直徑的圓的標準方程是__________.15.函數的導函數___________.16.在正項等比數列中,,,則的公比為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,平面平面,底面是菱形,E為的中點(1)證明:(2)已知,求二面角的余弦值18.(12分)根據下列條件求圓的方程:(1)圓心在點O(0,0),半徑r=3(2)圓心在點O(0,0),且經過點M(3,4)19.(12分)如圖,在長方體中,底面是邊長為1的正方形,側棱長為2,且動點P在線段AC上運動(1)若Q為的中點,求點Q到平面的距離;(2)設直線與平面所成角為,求的取值范圍20.(12分)已知橢圓,其焦點為,,離心率為,若點滿足.(1)求橢圓的方程;(2)若直線與橢圓交于兩點,為坐標原點,的重心滿足:,求實數的取值范圍.21.(12分)已知圓的圓心為,且經過點.(1)求圓的標準方程;(2)已知直線與圓相交于、兩點,求.22.(10分)在二項式的展開式中,______.給出下列條件:①若展開式前三項的二項式系數的和等于46;②所有奇數項的二項式系數的和為256.試在上面兩個條件中選擇一個補充在上面的橫線上,并解答下列問題:(1)求展開式中二項式系數最大的項;(2)求展開式的常數項.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】將拋物線方程化為標準方程,由此確定的值即可.【詳解】由可得拋物線標準方程為:,,拋物線的焦點到其準線的距離為.故選:D.2、D【解析】利用三線垂直建立空間直角坐標系,將線面角轉化為直線的方向向量和平面的法向量所成的角,再利用空間向量進行求解.【詳解】以,,所在直線為軸,軸,軸建立空間直角坐標系(如圖所示),則,,,,,設平面的一個法向量為,則,即,令,則,,所以平面的一個法向量為;設直線與平面所成角為,則,即直線與平面所成角的正弦值為.故選:D.3、B【解析】先畫出可行域,由,作出直線向下平移過點A時,取得最小值,然后求出點A的坐標,代入目標函數中可求得答案【詳解】由題可得其可行域為如圖,l:,當經過點A時,取到最小值,由,得,即,所以的最小值為故選:B4、C【解析】將甲的所有選修課等級從低到高排列可得甲的中位數,由圖可知乙的選修課等級的眾數.【詳解】由條形圖可得,甲同學共有10門選修課,將這10門選修課的成績等級從低到高排序后,第5,6門的成績等級分別為3,4,故中位數為,乙成績等級的眾數為5.故選:C.5、C【解析】根據題意求出P點坐標,代入橢圓方程中,可整理得到關于a,c的等式,進一步整理為關于e的方程,解得答案.【詳解】如圖示:由題意可知,因為四邊形是菱形,所以,則,所以P點坐標為,將P點坐標為代入得:,整理得,故,由于,解得,所以,故選:C.6、D【解析】設這個箱子的箱底的長為xm,則寬為m,設箱子總造價為f(x)元,則f(x)=72(x)+240,由此利用均值不等式能求出箱子的最低總造價【詳解】設這個箱子的箱底的長為xm,則寬為m,設箱子總造價為f(x)元,∴f(x)=15×16+12×3(2x)=72(x)+240≥144240=816,當且僅當x,即x=4時,f(x)取最小值816元故選:D7、C【解析】根據中位數的性質,結合題設按成績排序7選3,即可知還需明確的成績數據信息.【詳解】由題設,7名同學參加百米競賽,要取前3名參加決賽,則成績從高到低排列,確定7名同學成績的中位數,即第3名的成績便可判斷自己是否能進入決賽.故選:C.8、C【解析】根據題意可知圓心,又由于線外一點到已知直線的垂線段最短,結合點到直線的距離公式,即可求出結果.【詳解】由題意可知,圓心,半徑為,所以圓心到的距離為,所以的最小值為.故選:C.9、B【解析】先得到從高二和高三年級抽取人,再利用分層抽樣進行求解.【詳解】設高一年級學生人數為,因為從三個年級中抽取一個容量為的樣本,且高一年級抽取人,所以從高二和高三年級抽取人,則,解得,即高一年級學生人數為.故選:B10、A【解析】建立空間直角坐標系,得到相關點的坐標后求出直線的方向向量和平面的法向量,借助向量的運算求出線面角的正弦值【詳解】取AC的中點為坐標原點,建立如圖所示的空間直角坐標系設三棱柱的棱長為2,則,∴設為平面的一個法向量,由故令,得設直線AD與平面所成角為,則,所以直線AD與平面所成角的正弦值為故選A【點睛】空間向量的引入為解決立體幾何問題提供了較好的方法,解題時首先要建立適當的坐標系,得到相關點的坐標后借助向量的運算,將空間圖形的位置關系或數量關系轉化為向量的運算處理.在解決空間角的問題時,首先求出向量夾角的余弦值,然后再轉化為所求的空間角.解題時要注意向量的夾角和空間角之間的聯系和區別,避免出現錯誤11、C【解析】直線l:y=-x+a與漸近線l1:bx-ay=0交于B,l與漸近線l2:bx+ay=0交于C,A(a,0),∴,∵,∴,b=2a,∴,∴,∴考點:直線與圓錐曲線的綜合問題;雙曲線的簡單性質12、B【解析】設出雙曲線的一般方程,利用題設不等式,令二者平方,整理求得的,進而可判斷出焦點的位置【詳解】漸近線方程為,,平方,兩邊除,,,雙曲線的焦點在軸上.故選B.【點睛】本題考查已知雙曲線的漸近線方程求雙曲線的方程,考查對雙曲線標準方程的理解與運用,求解時要注意焦點落在軸或軸的特點,考查學生分析問題和解決問題的能力二、填空題:本題共4小題,每小題5分,共20分。13、【解析】先求出,利用裂項相消法求和.【詳解】因為數列滿足,,所以數列為公差d=2的等差數列,所以,所以所以.故答案為:.14、【解析】根據的中點是圓心,是半徑,即可寫出圓的標準方程.【詳解】因為和,故可得中點為,又,故所求圓的半徑為,則所求圓的標準方程是:.故答案為:.15、【解析】利用導函數的乘法公式和復合函數求導法則進行求解【詳解】故答案為:16、3【解析】由題設知等比數列公比,根據已知條件及等比數列通項公式列方程求公比即可.【詳解】由題設,等比數列公比,且,所以,可得或(舍),故公比為3.故答案為:3三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)詳見解析(2)【解析】(1)利用垂直關系,轉化為證明線面垂直,即可證明線線垂直;(2)利用垂直關系,建立空間直角坐標系,分別求平面和平面的法向量,利用公式,即可求解二面角的余弦值.【小問1詳解】如圖,取的中點,連結,,,因為,所以,因為平面平面,平面平面,所以平面,且平面,所以,又因為底面時菱形,所以,又因為點分別為的中點,所以,所以,且,所以平面,又因為平面,所以;【小問2詳解】由(1)可知,平面,連結,因為,,點為的中點,所以,則兩兩垂直,以點為坐標原點,建立空間直角坐標系,如圖所示:則,,,所以,,,,,,所以,,,設平面的法向量為,則,令,則,,故,設平面的法向量為,所以,因為二面角為銳二面角,所以二面角的余弦值為.18、(1)x2+y2=9(2)x2+y2=25【解析】(1)直接根據圓心坐標和半徑,即可得到答案;(2)利用兩點間的距離公式,求出圓的半徑,即可得到答案;【小問1詳解】根據題意,圓心在點O(0,0),半徑r=3,則要求圓的方程為x2+y2=9;【小問2詳解】圓心在點O(0,0),且經過點M(3,4),要求圓的半徑r==5,則要求圓的方程為x2+y2=25;19、(1)1(2)【解析】(1)以AB,AD,為x,y,z軸正向建立直角坐標系,利用空間向量法求出平面的法向量,結合點到平面的距離的向量求法計算即可;(2)設點,,進而得出的坐標,利用向量的數量積即可列出線面角正弦值的表達式,結合二次函數的性質即可得出結果.【小問1詳解】由題意,分別以AB,AD,為x,y,z軸正向建立直角坐標系,于是,,,,,設平面法向量所以,解得,,令得,,設點Q到平面的距離為d,【小問2詳解】由(1)可知,平面的法向量,由P點在線段AC上運動可設點,于是,,所以,的取值范圍是20、(1)(2)【解析】(1)運用橢圓的離心率公式,結合橢圓的定義可得在橢圓上,代入橢圓方程,求出,,即可求橢圓的方程;(2)設出直線方程,聯立直線和橢圓方程,利用根與系數之間的關系、以及向量數量積的坐標表示進行求解即可.【小問1詳解】依題意得,點,滿足,可得在橢圓上,可得:,且,解得,,所以橢圓的方程為;【小問2詳解】設,,,,,,當時,,此時A,B關于y軸對稱,則重心為,由得:,則,此時與橢圓不會有兩交點,故不合題意,故;聯立與橢圓方程,可得,可得,化為,,,①,設的重心,由,可得②由重心公式可得,代入②式,整理可得可得③①式代入③式并整理得,則,,令,則,可得,,,.【點睛】本題主要考查橢圓的方程以及直線和橢圓的位置關系的應用,利用消元法轉化為一元二次方程形式是解決本題的關鍵.21、(1);(2).【解析】(1)求出圓的半徑長,結合圓心坐標可得出圓的標準方程;(2)求出圓心到直線的距離,利用勾股
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 邊坡溜渣施工方案
- 2025石油管道運輸合同
- 長春金融高等專科學校《生活中的生物學》2023-2024學年第二學期期末試卷
- 長沙學院《冶金學術基礎英語》2023-2024學年第一學期期末試卷
- 《投資理財教育手冊》課件
- 江西工業貿易職業技術學院《西方世紀文學思潮研究》2023-2024學年第一學期期末試卷
- 2025至2031年中國攝像機鏡頭鏡片行業投資前景及策略咨詢研究報告
- 2025辦公室租賃合同樣本模板
- 《煤炭樣品采集與分析》課件
- 2025至2030年中國高導磁芯繞線數據監測研究報告
- 南寧市異地就醫備案登記表
- 房建工程安全質量觀摩會策劃匯報
- 例談非遺與勞動教育融合的教學思考 論文
- 郝萬山教授要求必背的112條《傷寒論》論原文
- 播音主持-論脫口秀節目主持人的現狀及發展前景
- 香港旅游介紹ppt模板
- 魔獸爭霸自定義改鍵CustomKeys
- 幼兒園故事課件:《畫龍點睛》
- 植被清理施工方案
- 新時代高職英語(基礎模塊)Unit4
- 中國亂倫現象調查報告
評論
0/150
提交評論