福建省漳浦達志中學2025屆高二上數學期末達標檢測試題含解析_第1頁
福建省漳浦達志中學2025屆高二上數學期末達標檢測試題含解析_第2頁
福建省漳浦達志中學2025屆高二上數學期末達標檢測試題含解析_第3頁
福建省漳浦達志中學2025屆高二上數學期末達標檢測試題含解析_第4頁
福建省漳浦達志中學2025屆高二上數學期末達標檢測試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

福建省漳浦達志中學2025屆高二上數學期末達標檢測試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.直線x-y+1=0被橢圓+y2=1所截得的弦長|AB|等于()A. B.C. D.2.已知函數,則()A.0 B.1C.2 D.3.已知雙曲線的漸近線方程為,則該雙曲線的離心率等于()A. B.C.2 D.44.已知命題:,命題:,則是的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件5.設為等差數列的前項和,,,則A.-6 B.-4C.-2 D.26.拋物線的焦點為F,A,B是拋物線上兩點,若,若AB的中點到準線的距離為3,則AF的中點到準線的距離為()A.1 B.2C.3 D.47.已知向量,,則向量等于()A.(3,1,-2) B.(3,-1,2)C.(3,-1,-2) D.(-3,-1,-2)8.已知函數,則的值為()A. B.C.0 D.19.圓的圓心和半徑分別是()A. B.C. D.10.設拋物線的焦點為F,準線為l,P為拋物線上一點,,A為垂足.如果直線AF的斜率是,那么()A B.C.16 D.811.中國古代數學著作《算法統宗》中有這樣一個問題:“三百七十八里關,初行健步不為難,次日腳痛減一半,六朝才得到其關,要見次日行里數,請公仔細算相還.”其意思為:有一個人走378里路,第一天健步行走,從第二天起腳痛每天走的路程為前一天的一半,走了6天后到達目的地,請問第二天走了()A.192

里 B.96

里C.48

里 D.24

里12.直線且的傾斜角為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知遞增數列共有2021項,且各項均不為零,,如果從中任取兩項,當時,仍是數列中的項,則的范圍是________________,數列的所有項和________14.設有下列命題:①當,時,不等式恒成立;②函數在上的最小值為2;③函數在上的最大值為;④若,,且,則的最小值為其中真命題為________________.(填寫所有真命題的序號)15.拋物線的準線方程是,則實數___________.16.已知直線與拋物線相交于A,B兩點,且,則拋物線C的準線方程為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系xOy中,橢圓C的左,右焦點分別為F1(﹣,0),F2(,0),且橢圓C過點(﹣).(1)求橢圓C的標準方程;(2)設過(0,﹣2)的直線l與橢圓C交于M,N兩點,O為坐標原點,若,求直線l的方程.18.(12分)已知拋物線的焦點為F,點在拋物線上.(1)求拋物線的標準方程;(2)過點的直線交拋物錢C于A,B兩點,O為坐標原點,記直線OA,OB的斜率分別,,求證:為定值.19.(12分)已知函數,曲線在點處的切線與直線垂直(其中為自然對數的底數)(1)求的值;(2)是否存在常數,使得對于定義域內的任意,恒成立?若存在,求出的值;若不存在,請說明理由20.(12分)在四棱錐中,底面ABCD是矩形,點E是線段PA的中點.(1)求證:平面EBD;(2)若是等邊三角形,,平面平面ABCD,求點E到平面PDB的距離.21.(12分)設A,B為曲線C:y=上兩點,A與B的橫坐標之和為4(1)求直線AB的斜率;(2)設M為曲線C上一點,C在M處的切線與直線AB平行,且AM⊥BM,求直線AB的方程22.(10分)在平面直角坐標系中,雙曲線的左、右兩個焦點為、,動點P滿足(1)求動點P的軌跡E的方程;(2)設過且不垂直于坐標軸的動直線l交軌跡E于A、B兩點,問:線段上是否存在一點D,使得以DA、DB為鄰邊的平行四邊形為菱形?若存在,請給出證明:若不存在,請說明理由

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】聯立方程組,求出交點坐標,利用兩點間的距離公式求距離.【詳解】由得交點為(0,1),,則|AB|==.故選:A.2、C【解析】對函數f(x)求導即可求得結果.【詳解】函數,則,,故選C【點睛】本題考查正弦函數的導數的應用,屬于簡單題.3、A【解析】由雙曲線的漸近線方程,可得,再由的關系和離心率公式,計算即可得到所求值【詳解】解:雙曲線的漸近線方程為,由題意可得即,可得由可得,故選:A.4、B【解析】利用充分條件和必要條件的定義判斷.【詳解】因為命題:或,命題:,所以是的必要不充分條件,故選:B5、A【解析】由已知得解得故選A考點:等差數列的通項公式和前項和公式6、C【解析】結合拋物線的定義求得,由此求得線段的中點到準線的距離【詳解】拋物線方程為,則,由于中點到準線的距離為3,結合拋物線的定義可知,即,所以線段的中點到準線的距離為.故選:C7、B【解析】根據空間向量線性運算的坐標表示即可得出答案.【詳解】解:因為,,所以.故選:B.8、B【解析】對函數求導,然后將代入導數中可得結果.【詳解】,則,則,故選:B9、B【解析】將圓的方程化成標準方程,即可求解.【詳解】解:.故選:B.10、D【解析】由題可得方程,進而可得點坐標及點坐標,利用拋物線定義即求【詳解】∵拋物線方程為,∴焦點F(2,0),準線l方程為x=?2,∵直線AF的斜率為,直線AF的方程為,由,可得,∵PA⊥l,A為垂足,∴P點縱坐標為,代入拋物線方程,得P點坐標為,∴.故選:D.11、B【解析】由題可得此人每天走的步數等比數列,根據求和公式求出首項可得.【詳解】由題意可知此人每天走的步數構成為公比的等比數列,由題意和等比數列的求和公式可得,解得,第此人第二天走里.故選:B12、C【解析】由直線方程可知其斜率,根據斜率和傾斜角關系可得結果.【詳解】直線方程可化為:,直線的斜率,直線的傾斜角為.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、①.②.1011【解析】根據題意得到,得到,,,,進而得到,從而即可求得的值.【詳解】由題意,遞增數列共有項,各項均不為零,且,所以,所以的范圍是,因為時,仍是數列中的項,即,且上述的每一項均在數列中,所以,,,,即,所以,所以.故答案為:;.14、①③④【解析】①直接利用基本不等式判斷即可;②直接利用基本不等式以及等號成立的條件判斷即可;③分子、分母同除,利用基本不等式即可判斷;④設,,利用指、對互化以及基本不等式即可判斷.【詳解】由于,,故恒成立,當且僅當時取等號,所以①正確;,當且僅當,即時取等號,由于,所以②不正確;因為,所以,當且僅當時取等號,而,即函數的最大值為,所以③正確;設,,則,,,,,所以,當且僅當,時取等號,故的最小值為,所以④正確.故答案為:①③④【點睛】易錯點睛:利用基本不等式求最值時,要注意其必須滿足的三個條件:(1)“一正二定三相等”“一正”就是各項必須為正數;(2)“二定”就是要求和的最小值,必須把構成和的二項之積轉化成定值;要求積的最大值,則必須把構成積的因式的和轉化成定值;(3)“三相等”是利用基本不等式求最值時,必須驗證等號成立的條件,若不能取等號則這個定值就不是所求的最值,這也是最容易發生錯誤的地方.15、##【解析】將拋物線方程化為標準方程,根據其準線方程即可求得實數.【詳解】拋物線化為標準方程:,其準線方程是,而所以,即,故答案為:16、【解析】將直線與拋物線聯立結合拋物線的定義即可求解.【詳解】解:直線與拋物線相交于A,B兩點設,直線與拋物線聯立得:所以所以即解得:所以拋物線C的準線方程為:.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)或.【解析】(1)設標準方程代入點的坐標,解方程組得解.(2)設直線方程代入橢圓方程消元,韋達定理整體思想,可得直線斜率得解.【小問1詳解】因為橢圓C的焦點為,可設橢圓C的方程為,又點在橢圓C上,所以,解得,因此,橢圓C的方程為;【小問2詳解】當直線的斜率不存在時,顯然不滿足題意;當直線的斜率存在時,設直線的方程為,設,,因為,所以,因為,,所以,所以,①聯立方程,消去得,則,代入①,得,解得,經檢驗,此時直線與橢圓相交,所以直線l的方程是或.18、(1)(2)證明見解析【解析】(1)將點代入拋物線方程即可求解;(2)當直線AB的斜率存在時,設直線AB的方程為,,將直線方程與拋物線方程聯立利用韋達定理即可求出的值;當直線AB的斜率不存在時,由過點即可求出點和點的坐標,即可求出的值.【小問1詳解】將點代入得,,∴拋物線的標準方程為.【小問2詳解】當直線AB斜率存在時,設直線AB的方程為,,將聯立得,,由韋達定理得:,,,當直線AB的斜率不存在時,由直線過點,則,,,,綜上所述可知,為定值為.19、(1)2;(2)存在,.【解析】(1)對函數求導,利用得的值;(2)討論和分離參數,構造新函數求解最值即可求解【詳解】解:(1),又由題意有(2)由(1)知,此時,由或,所以函數的單調減區間為和要恒成立,即①當時,,則要恒成立,令,再令,所以在內遞減,所以當時,,故,所以在內遞增,;②當時,lnx>0,則要恒成立,由①可知,當時,,所以內遞增,所以當時,,故,所以在內遞增,綜合①②可得,即存在常數滿足題意20、(1)見解析(2)【解析】(1)連接交于點,連接,由中位線定理結合線面平行的判定證明即可;(2)由得出點到平面的距離,再由是的中點,得出點到平面的距離.【小問1詳解】連接交于點,連接.因為分別是的中點,所以.又平面EBD,平面EBD,所以平面EBD;【小問2詳解】過點作的垂線,垂足為,連接.因為平面平面ABCD,平面平面ABCD,所以平面ABCD,所以,設點到平面的距離為因為,所以,因為點是的中點,所以點到平面的距離為.21、(1)1;(2)y=x+7【解析】(1)設A(x1,y1),B(x2,y2),直線AB的斜率k==,代入即可求得斜率;(2)由(1)中直線AB的斜率,根據導數的幾何意義求得M點坐標,設直線AB的方程為y=x+m,與拋物線聯立,求得根,結合弦長公式求得AB,由知,|AB|=2|MN|,從而求得參數m.【詳解】解:(1)設A(x1,y1),B(x2,y2),則x1≠x2,y1=,y2=,x1+x2=4,于是直線AB的斜率k===1(2)由y=,得y′=設M(x3,y3),由題設知=1,解得x3=2,于是M(2,1)設直線AB的方程為y=x+m,故線段AB的中點為N(2,2+m),|MN|=|m+1|將y=x+m代入y=得x2-4x-4m=0當Δ=16(m+1)>0,即m>-1時,x1,2=2±2從而|AB|=|x1-x2|=由題設知|AB|=2|MN|,即=2(m+1),解得m=7所以直線AB的方程為y=x+722、(1);(2)存在,理由見解析.【解析】(1)根據題意用定義法求解軌跡方程;(2)在第一問的基礎上,設出直線l的方

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論