




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江蘇省無錫江陰市華士片重點名校2024年中考數學猜題卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.今年春節某一天早7:00,室內溫度是6℃,室外溫度是-2℃,則室內溫度比室外溫度高()A.-4℃ B.4℃ C.8℃ D.-8℃2.某校九年級一班全體學生2017年中招理化生實驗操作考試的成績統計如下表,根據表中的信息判斷,下列結論中錯誤的是()成績(分)3029282618人數(人)324211A.該班共有40名學生B.該班學生這次考試成績的平均數為29.4分C.該班學生這次考試成績的眾數為30分D.該班學生這次考試成績的中位數為28分3.一次函數的圖象上有點和點,且,下列敘述正確的是A.若該函數圖象交y軸于正半軸,則B.該函數圖象必經過點C.無論m為何值,該函數圖象一定過第四象限D.該函數圖象向上平移一個單位后,會與x軸正半軸有交點4.在同一平面直角坐標系中,一次函數y=kx﹣2k和二次函數y=﹣kx2+2x﹣4(k是常數且k≠0)的圖象可能是()A. B.C. D.5.如圖,為了測量河對岸l1上兩棵古樹A、B之間的距離,某數學興趣小組在河這邊沿著與AB平行的直線l2上取C、D兩點,測得∠ACB=15°,∠ACD=45°,若l1、l2之間的距離為50m,則A、B之間的距離為()A.50m B.25m C.(50﹣)m D.(50﹣25)m6.如圖,在兩個同心圓中,四條直徑把大圓分成八等份,若往圓面投擲飛鏢,則飛鏢落在黑色區域的概率是()A. B. C. D.7.的值等于()A. B. C. D.8.如圖,正六邊形A1B1C1D1E1F1的邊長為2,正六邊形A2B2C2D2E2F2的外接圓與正六邊形A1B1C1D1E1F1的各邊相切,正六邊形A3B3C3D3E3F3的外接圓與正六邊形A2B2C2D2E2F2的各邊相切,…按這樣的規律進行下去,A11B11C11D11E11F11的邊長為()A. B. C. D.9.關于的方程有實數根,則整數的最大值是()A.6 B.7 C.8 D.910.如圖,將△ABC繞點C順時針旋轉90°得到△EDC.若點A,D,E在同一條直線上,∠ACB=20°,則∠ADC的度數是A.55° B.60° C.65° D.70°二、填空題(本大題共6個小題,每小題3分,共18分)11.某校為了了解學生雙休日參加社會實踐活動的情況,隨機抽取了100名學生進行調查,并繪成如圖所示的頻數分布直方圖.已知該校共有1000名學生,據此估計,該校雙休日參加社會實踐活動時間在2~2.5小時之間的學生數大約是全體學生數的________(填百分數).12.直線y=﹣x+1分別交x軸,y軸于A、B兩點,則△AOB的面積等于___.13.如圖,四邊形ABCD中,AD=CD,∠B=2∠D=120°,∠C=75°.則=14.我們知道:四邊形具有不穩定性.如圖,在平面直角坐標系xOy中,矩形ABCD的邊AB在x軸上,,,邊AD長為5.現固定邊AB,“推”矩形使點D落在y軸的正半軸上(落點記為),相應地,點C的對應點的坐標為_______.15.已知二次函數y=x2,當x>0時,y隨x的增大而_____(填“增大”或“減小”).16.如圖,AB、CD相交于點O,AD=CB,請你補充一個條件,使得△AOD≌△COB,你補充的條件是_____.三、解答題(共8題,共72分)17.(8分)某產品每件成本10元,試銷階段每件產品的銷售價x(元)與產品的日銷售量y(件)之間的關系如表:x/元…152025…y/件…252015…已知日銷售量y是銷售價x的一次函數.求日銷售量y(件)與每件產品的銷售價x(元)之間的函數表達式;當每件產品的銷售價定為35元時,此時每日的銷售利潤是多少元?18.(8分)如圖,已知平行四邊形ABCD,點M、N分別是邊DC、BC的中點,設=,=,求向量關于、的分解式.19.(8分)如圖,AC是⊙O的直徑,點P在線段AC的延長線上,且PC=CO,點B在⊙O上,且∠CAB=30°.(1)求證:PB是⊙O的切線;(2)若D為圓O上任一動點,⊙O的半徑為5cm時,當弧CD長為時,四邊形ADPB為菱形,當弧CD長為時,四邊形ADCB為矩形.20.(8分)化簡:(x+7)(x-6)-(x-2)(x+1)21.(8分)如圖,點P是菱形ABCD的對角線BD上一點,連接CP并延長,交AD于E,交BA的延長線點F.問:圖中△APD與哪個三角形全等?并說明理由;求證:△APE∽△FPA;猜想:線段PC,PE,PF之間存在什么關系?并說明理由.22.(10分)2018年4月12日上午,新中國歷史上最大規模的海上閱兵在南海海域隆重舉行,中國人解放軍海軍多艘戰艦、多架戰機和1萬余名官兵參加了海上閱兵式,已知戰艦和戰機總數是124,戰數的3倍比戰機數的2倍少8.問有多少艘戰艦和多少架戰機參加了此次閱兵.23.(12分)已知,四邊形ABCD中,E是對角線AC上一點,DE=EC,以AE為直徑的⊙O與邊CD相切于點D,點B在⊙O上,連接OB.求證:DE=OE;若CD∥AB,求證:BC是⊙O的切線;在(2)的條件下,求證:四邊形ABCD是菱形.24.如圖,在△ABC,AB=AC,以AB為直徑的⊙O分別交AC、BC于點D、E,點F在AC的延長線上,且∠CBF=12(1)求證:直線BF是⊙O的切線;(2)若AB=5,sin∠CBF=55
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】
根據題意列出算式,計算即可求出值.【詳解】解:根據題意得:6-(-2)=6+2=8,
則室內溫度比室外溫度高8℃,
故選:C.【點睛】本題考查了有理數的減法,熟練掌握運算法則是解題的關鍵.2、D【解析】A.∵32+4+2+1+1=40(人),故A正確;B.∵(30×32+29×4+28×2+26+18)÷40=29.4(分),故B正確;C.∵成績是30分的人有32人,最多,故C正確;D.該班學生這次考試成績的中位數為30分,故D錯誤;3、B【解析】
利用一次函數的性質逐一進行判斷后即可得到正確的結論.【詳解】解:一次函數的圖象與y軸的交點在y軸的正半軸上,則,,若,則,故A錯誤;
把代入得,,則該函數圖象必經過點,故B正確;
當時,,,函數圖象過一二三象限,不過第四象限,故C錯誤;
函數圖象向上平移一個單位后,函數變為,所以當時,,故函數圖象向上平移一個單位后,會與x軸負半軸有交點,故D錯誤,
故選B.【點睛】本題考查了一次函數圖象上點的坐標特征、一次函數圖象與幾何變換,解題的關鍵是熟練掌握一次函數的性質,靈活應用這些知識解決問題,屬于中考??碱}型.4、C【解析】
根據一次函數與二次函數的圖象的性質,求出k的取值范圍,再逐項判斷即可.【詳解】解:A、由一次函數圖象可知,k>0,∴﹣k<0,∴二次函數的圖象開口應該向下,故A選項不合題意;B、由一次函數圖象可知,k>0,∴﹣k<0,-=>0,∴二次函數的圖象開口向下,且對稱軸在x軸的正半軸,故B選項不合題意;C、由一次函數圖象可知,k<0,∴﹣k>0,-=<0,,∴二次函數的圖象開口向上,且對稱軸在x軸的負半軸,一次函數必經過點(2,0),當x=2時,二次函數值y=﹣4k>0,故C選項符合題意;D、由一次函數圖象可知,k<0,∴﹣k>0,-=<0,,∴二次函數的圖象開口向上,且對稱軸在x軸的負半軸,一次函數必經過點(2,0),當x=2時,二次函數值y=﹣4k>0,故D選項不合題意;故選:C.【點睛】本題考查一次函數與二次函數的圖象和性質,解決此題的關鍵是熟記圖象的性質,此外,還要主要二次函數的對稱軸、兩圖象的交點的位置等.5、C【解析】
如圖,過點A作AM⊥DC于點M,過點B作BN⊥DC于點N.則AM=BN.通過解直角△ACM和△BCN分別求得CM、CN的長度,則易得AB=MN=CM﹣CN,即可得到結論.【詳解】如圖,過點A作AM⊥DC于點M,過點B作BN⊥DC于點N.則AB=MN,AM=BN.在直角△ACM中,∵∠ACM=45°,AM=50m,∴CM=AM=50m.在直角△BCN中,∵∠BCN=∠ACB+∠ACD=60°,BN=50m,∴CN=(m),∴MN=CM﹣CN=50﹣(m).則AB=MN=(50﹣)m.故選C.【點睛】本題考查了解直角三角形的應用.解決此問題的關鍵在于正確理解題意的基礎上建立數學模型,把實際問題轉化為數學問題.6、D【解析】
兩個同心圓被均分成八等份,飛鏢落在每一個區域的機會是均等的,由此計算出黑色區域的面積,利用幾何概率的計算方法解答即可.【詳解】因為兩個同心圓等分成八等份,飛鏢落在每一個區域的機會是均等的,其中黑色區域的面積占了其中的四等份,所以P(飛鏢落在黑色區域)==.故答案選:D.【點睛】本題考查了幾何概率,解題的關鍵是熟練的掌握幾何概率的相關知識點.7、C【解析】試題解析:根據特殊角的三角函數值,可知:故選C.8、A【解析】分析:連接OE1,OD1,OD2,如圖,根據正六邊形的性質得∠E1OD1=60°,則△E1OD1為等邊三角形,再根據切線的性質得OD2⊥E1D1,于是可得OD2=E1D1=×2,利用正六邊形的邊長等于它的半徑得到正六邊形A2B2C2D2E2F2的邊長=×2,同理可得正六邊形A3B3C3D3E3F3的邊長=()2×2,依此規律可得正六邊形A11B11C11D11E11F11的邊長=()10×2,然后化簡即可.詳解:連接OE1,OD1,OD2,如圖,∵六邊形A1B1C1D1E1F1為正六邊形,∴∠E1OD1=60°,∴△E1OD1為等邊三角形,∵正六邊形A2B2C2D2E2F2的外接圓與正六邊形A1B1C1D1E1F1的各邊相切,∴OD2⊥E1D1,∴OD2=E1D1=×2,∴正六邊形A2B2C2D2E2F2的邊長=×2,同理可得正六邊形A3B3C3D3E3F3的邊長=()2×2,則正六邊形A11B11C11D11E11F11的邊長=()10×2=.故選A.點睛:本題考查了正多邊形與圓的關系:把一個圓分成n(n是大于2的自然數)等份,依次連接各分點所得的多邊形是這個圓的內接正多邊形,這個圓叫做這個正多邊形的外接圓.記住正六邊形的邊長等于它的半徑.9、C【解析】
方程有實數根,應分方程是一元二次方程與不是一元二次方程,兩種情況進行討論,當不是一元二次方程時,a-6=0,即a=6;當是一元二次方程時,有實數根,則△≥0,求出a的取值范圍,取最大整數即可.【詳解】當a-6=0,即a=6時,方程是-1x+6=0,解得x=;
當a-6≠0,即a≠6時,△=(-1)2-4(a-6)×6=201-24a≥0,解上式,得≈1.6,
取最大整數,即a=1.故選C.10、C【解析】
根據旋轉的性質和三角形內角和解答即可.【詳解】∵將△ABC繞點C順時針旋轉90°得到△EDC.∴∠DCE=∠ACB=20°,∠BCD=∠ACE=90°,AC=CE,∴∠ACD=90°-20°=70°,∵點A,D,E在同一條直線上,∴∠ADC+∠EDC=180°,∵∠EDC+∠E+∠DCE=180°,∴∠ADC=∠E+20°,∵∠ACE=90°,AC=CE∴∠DAC+∠E=90°,∠E=∠DAC=45°在△ADC中,∠ADC+∠DAC+∠DCA=180°,即45°+70°+∠ADC=180°,解得:∠ADC=65°,故選C.【點睛】此題考查旋轉的性質,關鍵是根據旋轉的性質和三角形內角和解答.二、填空題(本大題共6個小題,每小題3分,共18分)11、.【解析】
用被抽查的100名學生中參加社會實踐活動時間在2~2.5小時之間的學生除以抽查的學生總人數,即可得解.【詳解】由頻數分布直方圖知,2~2.5小時的人數為100﹣(8+24+30+10)=28,則該校雙休日參加社會實踐活動時間在2~2.5小時之間的學生數大約是全體學生數的百分比為100%=28%.故答案為:28%.【點睛】本題考查了頻數分布直方圖以及用樣本估計總體,利用統計圖獲取信息時,必須認真觀察、分析、研究統計圖,才能作出正確的判斷和解決問題.一般來說,用樣本去估計總體時,樣本越具有代表性、容量越大,這時對總體的估計也就越精確.12、.【解析】
先求得直線y=﹣x+1與x軸,y軸的交點坐標,再根據三角形的面積公式求得△AOB的面積即可.【詳解】∵直線y=﹣x+1分別交x軸、y軸于A、B兩點,∴A、B點的坐標分別為(1,0)、(0,1),S△AOB=OA?OB=×1×1=,故答案為.【點睛】本題考查了直線與坐標軸的交點坐標及三角形的面積公式,正確求得直線y=﹣x+1與x軸、y軸的交點坐標是解決問題的關鍵.13、【解析】
連接AC,過點C作CE⊥AB的延長線于點E,,如圖,先在Rt△BEC中根據含30度的直角三角形三邊的關系計算出BC、CE,判斷△AEC為等腰直角三角形,所以∠BAC=45°,AC=,利用即可求解.【詳解】連接AC,過點C作CE⊥AB的延長線于點E,∵∠ABC=2∠D=120°,∴∠D=60°,∵AD=CD,∴△ADC是等邊三角形,∵∠D+∠DAB+∠ABC+∠DCB=360°,∴∠ACB=∠DCB-∠DCA=75°-60°=15°,∠BAC=180°-∠ABC-∠ACB=180°-120°-15°=45°,∴AE=CE,∠EBC=45°+15°=60°,∴∠BCE=90°-60°=30°,設BE=x,則BC=2x,CE=,在RT△AEC中,AC=,∴,故答案為.【點睛】本題考查了解直角三角形:在直角三角形中,由已知元素求未知元素的過程就是解直角三角形.合理作輔助線是解題的關鍵.14、【解析】分析:根據勾股定理,可得,根據平行四邊形的性質,可得答案.詳解:由勾股定理得:=,即(0,4).矩形ABCD的邊AB在x軸上,∴四邊形是平行四邊形,A=B,=AB=4-(-3)=7,與的縱坐標相等,∴(7,4),故答案為(7,4).點睛:本題考查了多邊形,利用平行四邊形的性質得出A=B,=AB=4-(-3)=7是解題的關鍵.15、增大.【解析】
根據二次函數的增減性可求得答案【詳解】∵二次函數y=x2的對稱軸是y軸,開口方向向上,∴當y隨x的增大而增大.故答案為:增大.【點睛】本題考查的知識點是二次函數的性質,解題的關鍵是熟練的掌握二次函數的性質.16、∠A=∠C或∠ADC=∠ABC【解析】
本題證明兩三角形全等的三個條件中已經具備一邊和一角,所以只要再添加一組對應角或邊相等即可.【詳解】添加條件可以是:∠A=∠C或∠ADC=∠ABC.∵添加∠A=∠C根據AAS判定△AOD≌△COB,添加∠ADC=∠ABC根據AAS判定△AOD≌△COB,故填空答案:∠A=∠C或∠ADC=∠ABC.【點睛】本題考查了三角形全等的判定方法;判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加時注意:AAA、SSA不能判定兩個三角形全等,不能添加,根據已知結合圖形及判定方法選擇條件是正確解題的關鍵.三、解答題(共8題,共72分)17、();()此時每天利潤為元.【解析】試題分析:(1)根據題意用待定系數法即可得解;(2)把x=35代入(1)中的解析式,得到銷量,然后再乘以每件的利潤即可得.試題解析:()設,將,和,代入,得:,解得:,∴;()將代入()中函數表達式得:,∴利潤(元),答:此時每天利潤為元.18、答案見解析【解析】試題分析:連接BD,由已知可得MN是△BCD的中位線,則MN=BD,根據向量減法表示出BD即可得.試題解析:連接BD,∵點M、N分別是邊DC、BC的中點,∴MN是△BCD的中位線,∴MN∥BD,MN=BD,∵,∴.19、(1)證明見解析(2)cm,cm【解析】【分析】(1)連接OB,要證明PB是切線,只需證明OB⊥PB即可;(2)利用菱形、矩形的性質,求出圓心角∠COD即可解決問題.【詳解】(1)如圖連接OB、BC,∵OA=OB,∴∠OAB=∠OBA=30°,∴∠COB=∠OAB=∠OBA=60°,∵OB=OC,∴△OBC是等邊三角形,∴BC=OC,∵PC=OA=OC,∴BC=CO=CP,∴∠PBO=90°,∴OB⊥PB,∴PB是⊙O的切線;(2)①的長為cm時,四邊形ADPB是菱形,∵四邊形ADPB是菱形,∠ADB=△ACB=60°,∴∠COD=2∠CAD=60°,∴的長=cm;②當四邊形ADCB是矩形時,易知∠COD=120°,∴的長=cm,故答案為:cm,cm.【點睛】本題考查了圓的綜合題,涉及到切線的判定、矩形的性質、菱形的性質、弧長公式等知識,準確添加輔助線、靈活應用相關知識解決問題是關鍵.20、2x-40.【解析】
原式利用多項式乘以多項式法則計算,去括號合并即可.【詳解】解:原式=x2-6x+7x-42-x2-x+2x+2=2x-40.【點睛】此題考查了整式的混合運算,熟練掌握運算法則是解本題的關鍵.21、(1)△CPD.理由參見解析;(2)證明參見解析;(3)PC2=PE?PF.理由參見解析.【解析】
(1)根據菱形的性質,利用SAS來判定兩三角形全等;(2)根據第一問的全等三角形結論及已知,利用兩組角相等則兩三角形相似來判定即可;(3)根據相似三角形的對應邊成比例及全等三角形的對應邊相等即可得到結論.【詳解】解:(1)△APD≌△CPD.理由:∵四邊形ABCD是菱形,∴AD=CD,∠ADP=∠CDP.又∵PD=PD,∴△APD≌△CPD(SAS).(2)∵△APD≌△CPD,∴∠DAP=∠DCP,∵CD∥AB,∴∠DCF=∠DAP=∠CFB,又∵∠FPA=∠FPA,∴△APE∽△FPA(兩組角相等則兩三角形相似).(3)猜想:PC2=PE?PF.理由:∵△APE∽△FPA,∴即PA2=PE?PF.∵△APD≌△CPD,∴PA=PC.∴PC2=PE?PF.【點睛】本題考查1.相似三角形的判定與性質;2.全等三角形的判定;3.菱形的性質,綜合性較強.22、有48艘戰艦和76架戰機參加了此次閱兵.【解析】
設有x艘戰艦,y架戰機參加了此次閱兵,根據題意列出方程組解答即可.【詳解】設有x艘戰艦,y架戰機參加了此次閱兵,根據題意,得,解這個方程組,得,答:有48艘戰艦和76架戰機參加了此次閱兵.【點睛】此題考查二元一次方程組的應用,關鍵是根據題意列出等量關系進行解答.23、(1)證明見解析;(2)證明見解析;(3)證明見解析.【解析】
(1)先判斷出∠2+∠3=90°,再判斷出∠1=∠2即可得出結論;(2)根據等腰三角形的性質得到∠3=∠COD=∠DEO=60°,根據平行線的性質得到∠4=∠1,根據全等三角形的性質得到∠CBO=∠CDO=90°,于是得到結論;(3)先判斷出△ABO≌△CDE得出AB=CD,即可判斷出四邊形ABCD是平行四邊形,最后判斷出CD=AD即可.【詳解】(1)如圖,連
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣州工程技術職業學院《基礎法語精讀(2)》2023-2024學年第二學期期末試卷
- 測繪安全合同
- 手房擔保買賣合同
- 貨物運輸險合同
- 啤酒銷售合作協議合同
- 合同法規專業術語考查點
- 建筑工地塔吊司機用工合同
- 《國防建設》國防建設與外交成就課件
- 古詩詞誦讀《燕歌行(并序)》課件22張 2021-2022學年統編版高中語文選擇性必修中冊
- 車房抵押借貸合同范本
- 《證券法》新舊條文對照表
- 百事可樂廣告策略通用課件
- 市政公用工程設計文件編制深度規定
- 集團公司物資管理辦法(企業版)
- 新風系統的施工組織方案
- 義務教育英語課程標準(2022年版) (1)
- 鋅合金電鍍及退鍍工藝精選版
- 百家姓全文帶拼音打印版本
- 關于電商平臺對入駐經營者的審核要求或規范文件
- 群塔作業方案(圖文并茂,十分詳細)
- 道場迎請亡魂開五方科儀
評論
0/150
提交評論