




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
人教版數學七年級下冊知識點總結第五章相交線與平行線一、相交線:兩條直線相交,形成4個角.1.鄰補角:兩個角有一條公共邊,它們的另一條邊互為反向延長線.具有這種關系的兩個角,互為鄰補角.如:∠1、∠2.2對頂角:角的兩條邊,分別是另一個角的兩條邊的反向.如:∠1、∠3.3.對頂角相等.二、垂線1.垂直:如果兩條直線相交成直角,那么這兩條直線互相垂直.2一條直線叫做另一條直線的垂線.3.垂足:兩條垂線的交點叫垂足.4.垂線特點:過一點有且只有一條直線與已知直線垂直.5叫點到直線的距離.連接直線外一點與直線上各點的所有線段中,垂線段最短.三、同位角、內錯角、同旁內角兩條直線被第三條直線所截形成8.1同位角EF種位置關系的兩個角叫同位角.如:∠1和∠5.2.內錯角:在在兩條直線之間,又在直線EF.如:∠3和∠5.3.同旁內角:在在兩條直線之間,又在直線EF的同側,具有這種位置關系的兩個角叫同旁內角.如:∠3和∠6.四、平行線()平行線1.平行:兩條直線不相交.互相平行的兩條直線,互為平行線.a∥.)2.平行公理:經過直線外一點,有且只有一條直線與這條直線平行.3.平行公理推論:①平行于同一直線的兩條直線互相平行.②在同一平面內,垂直于同一直線的兩條直線互相平行.()平行線的判定1.同位角相等,兩直線平行.2.內錯角相等,兩直線平行.3.同旁內角互補,兩直線平行.()平行線的性質1.兩條平行線被第三條直線所截,同位角相等.2.兩條平行線被第三條直線所截,內錯角相等.3.兩條平行線被第三條直線所截,同旁內角互補.4.兩條平行線被第三條直線所截,外錯角相等.以上性質可簡單說成:1.兩條直線平行,同位角相等.2.兩條直線平行,內錯角相等.3.兩條直線平行,同旁內角互補.()命題、定理1.命題的概念:判斷一件事情的語句,叫做命題.2.命題的組成:每個命題都是題設、結論兩部分組成.題設是已知事項;結論是由已知事項推出的事項.命題常寫成“如果??,那么??”的形式.具有這種形式的命題中,用“如果”開始的部分是題設,用“那么”開始的部分是結論.3.真命題:正確的命題,題設是成立,結論一定成立.4.假命題:錯誤的命題,題設是成立,不能保證結論一定成立.5.定理;經過推理證實得到的真命題.(定理可以做為繼續推理的依據)()平移1:定的距離,這樣的圖形運動叫做平移變換(簡稱平移),不改變物體的形狀和大小.2.平移的性質新圖形與原圖形的形狀和大小完全相同.這兩個點是對應點.連接各組對應點的線段平行且相等.第六章實數一、算術平方根1.算術平方根:如果一個正數x的平方等于ax2=a,那么這個正數x叫做a的算術平方根,記作a.0的算術平方根為0;2.平方根:如果一個數xax2=a,那么數x就叫做a的平方根(或二次方根).3.開平方:求一個數a的平方根的運算(與平方互為逆運算)4相反數;負數沒有平方根.二、立方根1.立方根:如果一個數xax3=a,那么數x就叫做a的立方根(或三次方根).2a的立方根的運算(與立方互為逆運算).3.0的立方根是0.三、實數1.無理數:無限不循環小數.如:π、√2、√32.實數都可以用數軸上的點表示.第七章平面直角坐標系一、平面直角坐標系()有序數對1.有序數對的概念記作(a,b).2.坐標:數軸(或平面)上的點可以用一個數(或數對)來表示,這個數(或數對)叫做這個點的坐標.()平面直角坐標系1.平面直角坐標系:在平面內畫兩條互相垂直,并且有公共原點的數軸.這樣我們就說在平面上建立了平面直角坐標系,簡稱直角坐標系.2X軸:水平的數軸叫X軸或橫軸.向右方向為正方向.3Y軸:豎直的數軸叫Y軸或縱軸.向上方向為正方向.4.原點:兩個數軸的交點叫做平面直角坐標系的原點.5.在平面直角坐標系中對稱點的特點①關于x數.②關于y數.數,縱坐標與縱坐標互為相反數.()象限1.象限:X軸和Y.第二象限、第三象限和第四象限.象限以數軸為界,橫軸、縱軸上的點及原點不屬于任何象限.一般,在xy軸取相同的單位長度.2.象限的特點①特殊位置的點的坐標的特點:(1x軸上的點的縱坐標為零;y軸上的點的橫坐標為零.(2)第一、三象限角平分線上的點橫、縱坐標相等;第二、四象限角平分線上的點橫、縱坐標互為相反數.(3)在任意的兩點中,如果兩點的橫坐標相同,則兩點的連橫軸.②點到軸及原點的距離:點到x軸的距離為|y|;點到y軸的距離為|x|;點到原點的距離為x的平方加y的平方再開根號;③各象限內和坐標軸上的點和坐標的規律:++)-+)--)+-.x+0)x-0)y0+)y軸負方向:(0,-).坐標原點:(00)x軸上的點縱坐標為0,y軸橫坐標為0.二、坐標方法的簡單應用()用坐標表示地理位置的過程:1.建立坐標系,選擇一個合適的參照點為原點,確定X軸和Y軸的正方向.2.根據具體問題確定適當的比例尺,在坐標軸上標出單位長度.3.在坐標平面內畫出這些點,寫出各點的坐標和各個地點的名稱.()用坐標表示平移在平面直角坐標系內,如果把一個圖形各個點的橫坐標都加(或減去)一個正數a()平移a個單位長度;如果把它各個點的縱坐標都加(或減去)一個正數a()a個單位長度.第八章二元一次方程組一、二元一次方程組1.高次數是1,這樣的整式方程叫做二元一次方程.2.如果方程這樣的方程組叫做二元一次方程組.3.二元一次方程組的解:二元一次方程的兩個方程的公共解叫二元一次方程組的解.二、消元二元一次方程組有兩種解法:一種是代入消元法,一種是加減消元法.1.代入消元法:把二元一次方程中的一個方程的一個未知數消元,進而求得這個二元一次方程組的解.2.加減消元法:兩個二元一次方程中同一未知數的系數相反個未知數,得到一個一元一次方程.第九章不等式與不等式組一、不等式及其解集1(包括:><)表示大小關系的式子.2.3.不等式的解集:使不等式成立的未知數的取值范圍,叫不等式的解的集合,簡稱解集.二、不等式的基本性質性質1:a>b,b>c,a>c(不等式的傳遞性).性質2:不等式的兩邊同加(減)同一個數(或式子),不等號的方向不變.如果a>b,a+c>b+c(不等式的可加性).性質3:不等式的兩邊同乘(除以)同一個正數,不等號的方向不變.不等式的兩邊同乘(除以)同一個負數,不等號的方向改變.如果a>b,c>0,ac>bc;a>b,c<0,ac<bc.(不等式的乘法法則)性質4:a>b,c>d,a+c>b+d.(不等式的加法法則)性質5:a>b>0,c>d>0,ac>bd.(可乘性)性質6:a>b>0,n∈N,n>1,那么an>b,且.當0<n<1時也成n立.(乘方法則)三、實際問題與一元一次不等式1.1的不等式.2.解一元一次不等式的一般方法:上表示出以兩條不等式組成的不等式組為例,知數的解集為不等式組的解集,此乃“同小取小”知數的解集為不等式組的解集,此乃“同大取大”等式組的解集.若xa<x<baxb.此乃“相交取中”是空集,不等式組無解.此乃“向背取空”四、一元一次不等式組1.不等式組:幾個含有相同未知數的不等式合起來,叫做不等式組.2.不等式組的解:幾個不等式的解集的公共部分,叫做由它們組成的不等式組的解集.解不等式組就是求它的解集.3.解不等式組:先求出其中各不等式的解集,再求出這些解集的公共部分,利用數軸可以直觀地表示不等式的解集.第十章數據的收集、整理與描述1.全面調查:考察全體對象的調查方式叫做全面調查.2.抽樣調查:調查部分數據,根據部分來估計總體的調查方式稱為抽樣調查.3.總體:要考察的全體對象稱為總體.4.個體:組成總體的每一個考察對象稱為個體.5.樣本:被抽取的所有個體組成一個樣本.6.樣本容量:樣本中個體的數目稱為樣本容量.7.頻數:一般地,我們稱落在不同小組中的數據個數為該組的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 南昌航空大學《旋律寫作基礎(1)》2023-2024學年第二學期期末試卷
- 上海市華二附中2025年高三年級下學期十月份月考英語試題含解析
- 上海海洋大學《普通動物學》2023-2024學年第二學期期末試卷
- 江蘇省南通如皋市2025屆高三二模(4月)英語試題含解析
- 濮陽石油化工職業技術學院《生物醫用材料概論》2023-2024學年第二學期期末試卷
- 麗水學院《ACCASBR戰略商務報告》2023-2024學年第二學期期末試卷
- 共享員工協議書合同書協議書
- 二零二五集體林地承包租賃合同
- 抵押借款合同范例范例
- 二零二五版餐飲出租簡單合同范例
- 新課標背景下:如何進行大單元整體教學設計
- ISO9001-2015質量管理體系審核案例分析19個
- 現金盤點表完整版
- GB/T 25146-2010工業設備化學清洗質量驗收規范
- GB/T 212-2008煤的工業分析方法
- GB/T 17390-2010潛油電泵拆卸報告的編寫
- 班主任工作坊活動方案
- 中醫科物理治療登記表
- 國開電大 管理概論 形考任務一(畫組織結構圖)
- 三自由度并聯機器人結構設計
- 墨爾本介紹課件
評論
0/150
提交評論