




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆浙江省衢州市菁才中學中考押題卷數學試題(2)請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,在平面直角坐標系xOy中,點A(1,0),B(2,0),正六邊形ABCDEF沿x軸正方向無滑動滾動,每旋轉60°為滾動1次,那么當正六邊形ABCDEF滾動2017次時,點F的坐標是()A.(2017,0) B.(2017,)C.(2018,) D.(2018,0)2.我國古代數學家劉徽創立的“割圓術”可以估算圓周率π,理論上能把π的值計算到任意精度.祖沖之繼承并發展了“割圓術”,將π的值精確到小數點后第七位,這一結果領先世界一千多年,“割圓術”的第一步是計算半徑為1的圓內接正六邊形的面積S6,則S6的值為()A. B.2 C. D.3.中國古代在利用“計里畫方”(比例縮放和直角坐標網格體系)的方法制作地圖時,會利用測桿、水準儀和照板來測量距離.在如圖所示的測量距離AB的示意圖中,記照板“內芯”的高度為EF,觀測者的眼睛(圖中用點C表示)與BF在同一水平線上,則下列結論中,正確的是()A. B. C. D.4.計算4+(﹣2)2×5=()A.﹣16B.16C.20D.245.下列命題中,錯誤的是()A.三角形的兩邊之和大于第三邊B.三角形的外角和等于360°C.等邊三角形既是軸對稱圖形,又是中心對稱圖形D.三角形的一條中線能將三角形分成面積相等的兩部分6.如圖,在四邊形ABCD中,∠A+∠D=α,∠ABC的平分線與∠BCD的平分線交于點P,則∠P=()A.90°-α B.90°+α C. D.360°-α7.將一副三角板按如圖方式擺放,∠1與∠2不一定互補的是()A. B. C. D.8.如圖,已知線段AB,分別以A,B為圓心,大于AB為半徑作弧,連接弧的交點得到直線l,在直線l上取一點C,使得∠CAB=25°,延長AC至點M,則∠BCM的度數為()A.40° B.50° C.60° D.70°9.如圖,以兩條直線l1,l2的交點坐標為解的方程組是()A. B. C. D.10.已知圓錐的底面半徑為2cm,母線長為5cm,則圓錐的側面積是()A.20cm2 B.20πcm2 C.10πcm2 D.5πcm2二、填空題(共7小題,每小題3分,滿分21分)11.一元二次方程x2﹣4=0的解是._________12.如圖,△ABC內接于⊙O,AB是⊙O的直徑,點D在圓O上,BD=CD,AB=10,AC=6,連接OD交BC于點E,DE=______.13.________.14.在實數范圍內分解因式:x2y﹣2y=_____.15.已知|x|=3,y2=16,xy<0,則x﹣y=_____.16.關于x的方程kx2﹣(2k+1)x+k+2=0有實數根,則k的取值范圍是_____.17.如圖,數軸上不同三點對應的數分別為,其中,則點表示的數是__________.三、解答題(共7小題,滿分69分)18.(10分)如圖,有四張背面相同的卡片A、B、C、D,卡片的正面分別印有正三角形、平行四邊形、圓、正五邊形(這些卡片除圖案不同外,其余均相同).把這四張卡片背面向上洗勻后,進行下列操作:(1)若任意抽取其中一張卡片,抽到的卡片既是中心對稱圖形又是軸對稱圖形的概率是;(2)若任意抽出一張不放回,然后再從余下的抽出一張.請用樹狀圖或列表表示摸出的兩張卡片所有可能的結果,求抽出的兩張卡片的圖形是中心對稱圖形的概率.19.(5分)已知:如圖,在□ABCD中,點G為對角線AC的中點,過點G的直線EF分別交邊AB、CD于點E、F,過點G的直線MN分別交邊AD、BC于點M、N,且∠AGE=∠CGN.(1)求證:四邊形ENFM為平行四邊形;(2)當四邊形ENFM為矩形時,求證:BE=BN.20.(8分)講授“軸對稱”時,八年級教師設計了如下:四種教學方法:①教師講,學生聽②教師讓學生自己做③教師引導學生畫圖發現規律④教師讓學生對折紙,觀察發現規律,然后畫圖為調查教學效果,八年級教師將上述教學方法作為調研內容發到全年級8個班420名同學手中,要求每位同學選出自己最喜歡的一種.他隨機抽取了60名學生的調查問卷,統計如圖(1)請將條形統計圖補充完整;(2)計算扇形統計圖中方法③的圓心角的度數是;(3)八年級同學中最喜歡的教學方法是哪一種?選擇這種教學方法的約有多少人?21.(10分)如圖,吊車在水平地面上吊起貨物時,吊繩BC與地面保持垂直,吊臂AB與水平線的夾角為64°,吊臂底部A距地面1.5m.(計算結果精確到0.1m,參考數據sin64°≈0.90,cos64°≈0.44,tan64°≈2.05)(1)當吊臂底部A與貨物的水平距離AC為5m時,吊臂AB的長為m.(2)如果該吊車吊臂的最大長度AD為20m,那么從地面上吊起貨物的最大高度是多少?(吊鉤的長度與貨物的高度忽略不計)22.(10分)如圖,△ABC和△BEC均為等腰直角三角形,且∠ACB=∠BEC=90°,AC=4,點P為線段BE延長線上一點,連接CP以CP為直角邊向下作等腰直角△CPD,線段BE與CD相交于點F.(1)求證:;(2)連接BD,請你判斷AC與BD有什么位置關系?并說明理由;(3)若PE=1,求△PBD的面積.23.(12分)如圖,⊙O的直徑AD長為6,AB是弦,CD∥AB,∠A=30°,且CD=.(1)求∠C的度數;(2)求證:BC是⊙O的切線.24.(14分)益馬高速通車后,將桃江馬跡塘的農產品運往益陽的運輸成本大大降低.馬跡塘一農戶需要將A,B兩種農產品定期運往益陽某加工廠,每次運輸A,B產品的件數不變,原來每運一次的運費是1200元,現在每運一次的運費比原來減少了300元,A,B兩種產品原來的運費和現在的運費(單位:元∕件)如下表所示:品種AB原來的運費4525現在的運費3020(1)求每次運輸的農產品中A,B產品各有多少件;(2)由于該農戶誠實守信,產品質量好,加工廠決定提高該農戶的供貨量,每次運送的總件數增加8件,但總件數中B產品的件數不得超過A產品件數的2倍,問產品件數增加后,每次運費最少需要多少元.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】
本題是規律型:點的坐標;坐標與圖形變化-旋轉,正六邊形ABCDEF一共有6條邊,即6次一循環;因為2017÷6=336余1,點F滾動1次時的橫坐標為2,縱坐標為,點F滾動7次時的橫坐標為8,縱坐標為,所以點F滾動2107次時的縱坐標與相同,橫坐標的次數加1,由此即可解決問題.【詳解】.解:∵正六邊形ABCDEF一共有6條邊,即6次一循環;∴2017÷6=336余1,∴點F滾動1次時的橫坐標為2,縱坐標為,點F滾動7次時的橫坐標為8,縱坐標為,∴點F滾動2107次時的縱坐標與相同,橫坐標的次數加1,∴點F滾動2107次時的橫坐標為2017+1=2018,縱坐標為,∴點F滾動2107次時的坐標為(2018,),故選C.本題考查坐標與圖形的變化,規律型:點的坐標,解題關鍵是學會從特殊到一般的探究方法,是中考常考題型.2、C【解析】
根據題意畫出圖形,結合圖形求出單位圓的內接正六邊形的面積.【詳解】如圖所示,單位圓的半徑為1,則其內接正六邊形ABCDEF中,△AOB是邊長為1的正三角形,所以正六邊形ABCDEF的面積為S6=6××1×1×sin60°=.故選C.本題考查了已知圓的半徑求其內接正六邊形面積的應用問題,關鍵是根據正三角形的面積,正n邊形的性質解答.3、B【解析】分析:由平行得出相似,由相似得出比例,即可作出判斷.詳解:∵EF∥AB,∴△CEF∽△CAB,∴,故選B.點睛:本題考查了相似三角形的應用,熟練掌握相似三角形的判定與性質是解答本題的關鍵.4、D【解析】分析:根據有理數的乘方、乘法和加法可以解答本題.詳解:4+(﹣2)2×5=4+4×5=4+20=24,故選:D.點睛:本題考查有理數的混合運算,解答本題的關鍵是明確有理數的混合運算的計算方法.5、C【解析】
根據三角形的性質即可作出判斷.【詳解】解:A、正確,符合三角形三邊關系;B、正確;三角形外角和定理;C、錯誤,等邊三角形既是軸對稱圖形,不是中心對稱圖形;D、三角形的一條中線能將三角形分成面積相等的兩部分,正確.故選:C.本題考查了命題真假的判斷,屬于基礎題.根據定義:符合事實真理的判斷是真命題,不符合事實真理的判斷是假命題,不難選出正確項.6、C【解析】試題分析:∵四邊形ABCD中,∠ABC+∠BCD=360°﹣(∠A+∠D)=360°﹣α,∵PB和PC分別為∠ABC、∠BCD的平分線,∴∠PBC+∠PCB=(∠ABC+∠BCD)=(360°﹣α)=180°﹣α,則∠P=180°﹣(∠PBC+∠PCB)=180°﹣(180°﹣α)=α.故選C.考點:1.多邊形內角與外角2.三角形內角和定理.7、D【解析】A選項:∠1+∠2=360°-90°×2=180°;B選項:∵∠2+∠3=90°,∠3+∠4=90°,∴∠2=∠4,∵∠1+∠4=180°,∴∠1+∠2=180°;C選項:∵∠ABC=∠DEC=90°,∴AB∥DE,∴∠2=∠EFC,∵∠1+∠EFC=180°,∴∠1+∠2=180°;D選項:∠1和∠2不一定互補.故選D.點睛:本題主要掌握平行線的性質與判定定理,關鍵在于通過角度之間的轉化得出∠1和∠2的互補關系.8、B【解析】
解:∵由作法可知直線l是線段AB的垂直平分線,∴AC=BC,∴∠CAB=∠CBA=25°,∴∠BCM=∠CAB+∠CBA=25°+25°=50°.故選B.9、C【解析】
兩條直線的交點坐標應該是聯立兩個一次函數解析式所組成的方程組的解.因此本題需先根據兩直線經過的點的坐標,用待定系數法求出兩直線的解析式.然后聯立兩函數的解析式可得出所求的方程組.【詳解】直線l1經過(2,3)、(0,-1),易知其函數解析式為y=2x-1;直線l2經過(2,3)、(0,1),易知其函數解析式為y=x+1;因此以兩條直線l1,l2的交點坐標為解的方程組是:.故選C.本題主要考查了函數解析式與圖象的關系,滿足解析式的點就在函數的圖象上,在函數的圖象上的點,就一定滿足函數解析式.函數圖象交點坐標為兩函數解析式組成的方程組的解.10、C【解析】圓錐的側面積=底面周長×母線長÷2,把相應數值代入,圓錐的側面積=2π×2×5÷2=10π.故答案為C二、填空題(共7小題,每小題3分,滿分21分)11、x=±1【解析】移項得x1=4,∴x=±1.故答案是:x=±1.12、1【解析】
先利用垂徑定理得到OD⊥BC,則BE=CE,再證明OE為△ABC的中位線得到,入境計算OD?OE即可.【詳解】解:∵BD=CD,∴,∴OD⊥BC,∴BE=CE,而OA=OB,∴OE為△ABC的中位線,∴,∴DE=OD-OE=5-3=1.故答案為1.此題考查垂徑定理,中位線的性質,解題的關鍵在于利用中位線的性質求解.13、1【解析】
先將二次根式化為最簡,然后再進行二次根式的乘法運算即可.【詳解】解:原式=2×=1.故答案為1.本題考查了二次根式的乘法運算,屬于基礎題,掌握運算法則是關鍵.14、y(x+)(x﹣)【解析】
先提取公因式y后,再把剩下的式子寫成x2-()2,符合平方差公式的特點,可以繼續分解.【詳解】x2y-2y=y(x2-2)=y(x+)(x-).故答案為y(x+)(x-).本題考查實數范圍內的因式分解,因式分解的步驟為:一提公因式;二看公式.在實數范圍內進行因式分解的式子的結果一般要分到出現無理數為止.15、±3【解析】分析:本題是絕對值、平方根和有理數減法的綜合試題,同時本題還滲透了分類討論的數學思想.詳解:因為|x|=1,所以x=±1.因為y2=16,所以y=±2.又因為xy<0,所以x、y異號,當x=1時,y=-2,所以x-y=3;當x=-1時,y=2,所以x-y=-3.故答案為:±3.點睛:本題是一道綜合試題,本題中有分類的數學思想,求解時要注意分類討論.16、k≤.【解析】
分k=1及k≠1兩種情況考慮:當k=1時,通過解一元一次方程可得出原方程有解,即k=1符合題意;等k≠1時,由△≥1即可得出關于k的一元一次不等式,解之即可得出k的取值范圍.綜上此題得解.【詳解】當k=1時,原方程為-x+2=1,解得:x=2,∴k=1符合題意;當k≠1時,有△=[-(2k+1)]2-4k(k+2)≥1,解得:k≤且k≠1.綜上:k的取值范圍是k≤.故答案為:k≤.本題考查了根的判別式以及一元二次方程的定義,分k=1及k≠1兩種情況考慮是解題的關鍵.17、1【解析】
根據兩點間的距離公式可求B點坐標,再根據絕對值的性質即可求解.【詳解】∵數軸上不同三點A、B、C對應的數分別為a、b、c,a=-4,AB=3,∴b=3+(-4)=-1,∵|b|=|c|,∴c=1.故答案為1.考查了實數與數軸,絕對值,關鍵是根據兩點間的距離公式求得B點坐標.三、解答題(共7小題,滿分69分)18、(1);(2).【解析】
(1)既是中心對稱圖形又是軸對稱圖形只有圓一個圖形,然后根據概率的意義解答即可;(2)畫出樹狀圖,然后根據概率公式列式計算即可得解.【詳解】(1)∵正三角形、平行四邊形、圓、正五邊形中只有圓既是中心對稱圖形又是軸對稱圖形,∴抽到的卡片既是中心對稱圖形又是軸對稱圖形的概率是;(2)根據題意畫出樹狀圖如下:一共有12種情況,抽出的兩張卡片的圖形是中心對稱圖形的是B、C共有2種情況,所以,P(抽出的兩張卡片的圖形是中心對稱圖形).本題考查了列表法和樹狀圖法,用到的知識點為:概率=所求情況數與總情況數之比.19、(1)證明見解析;(2)證明見解析.【解析】分析:(1)由已知條件易得∠EAG=∠FCG,AG=GC結合∠AGE=∠FGC可得△EAG≌△FCG,從而可得△EAG≌△FCG,由此可得EG=FG,同理可得MG=NG,由此即可得到四邊形ENFM是平行四邊形;(2)如下圖,由四邊形ENFM為矩形可得EG=NG,結合AG=CG,∠AGE=∠CGN可得△EAG≌△NCG,則∠BAC=∠ACB,AE=CN,從而可得AB=CB,由此可得BE=BN.詳解:(1)∵四邊形ABCD為平行四四邊形邊形,∴AB//CD.∴∠EAG=∠FCG.∵點G為對角線AC的中點,∴AG=GC.∵∠AGE=∠FGC,∴△EAG≌△FCG.∴EG=FG.同理MG=NG.∴四邊形ENFM為平行四邊形.(2)∵四邊形ENFM為矩形,∴EF=MN,且EG=,GN=,∴EG=NG,又∵AG=CG,∠AGE=∠CGN,∴△EAG≌△NCG,∴∠BAC=∠ACB,AE=CN,∴AB=BC,∴AB-AE=CB-CN,∴BE=BN.點睛:本題是一道考查平行四邊形的判定和性質及矩形性質的題目,熟練掌握相關圖形的性質和判定是順利解題的關鍵.20、解:(1)見解析;(2)108°;(3)最喜歡方法④,約有189人.【解析】
(1)由題意可知:喜歡方法②的學生有60-6-18-27=9(人);(2)求方法③的圓心角應先求所占比值,再乘以360°;(3)根據條形的高低可判斷喜歡方法④的學生最多,人數應該等于總人數乘以喜歡方法④所占的比例;【詳解】(1)方法②人數為60?6?18?27=9(人);補條形圖如圖:(2)方法③的圓心角為故答案為108°(3)由圖可以看出喜歡方法④的學生最多,人數為(人);考查扇形統計圖,條形統計圖,用樣本估計總體,比較基礎,難度不大,是中考??碱}型.21、(1)11.4;(2)19.5m.【解析】
(1)根據直角三角形的性質和三角函數解答即可;
(2)過點D作DH⊥地面于H,利用直角三角形的性質和三角函數解答即可.【詳解】解:(1)在Rt△ABC中,∵∠BAC=64°,AC=5m,∴AB=ACcos64°故答案為:11.4;(2)過點D作DH⊥地面于H,交水平線于點E,在Rt△ADE中,∵AD=20m,∠DAE=64°,EH=1.5m,∴DE=sin64°×AD≈20×0.9≈18(m),即DH=DE+EH=18+1.5=19.5(m),答:如果該吊車吊臂的最大長度AD為20m,那么從地面上吊起貨物的最大高度是19.5m.本題考查解直角三角形、銳角三角函數等知識,解題的關鍵是添加輔助線,構造直角三角形.22、(1)見解析;(2)AC∥BD,理由見解析;(3)【解析】
(1)直接利用相似三角形的判定方法得出△BCE∽△DCP,進而得出答案;
(2)首先得出△PCE∽△DCB,進而求出∠ACB=∠CBD,即可得出AC與BD的位置關系;
(3)首先利用相似三角形的性質表示出BD,PM的長,進而根據三角形的面積公式得到△PBD的面積.【詳解】(1)證明:∵△BCE和△CDP均為等腰直角三角形,∴∠ECB=∠PCD=45°,∠CEB=∠CPD=90°,∴△BCE∽△DCP,∴;(2)解:結論:AC∥BD,理由:∵∠PCE+∠ECD=∠BCD+∠ECD=45°,∴∠PCE=∠BCD,又∵,∴△PCE∽△DCB,∴∠CBD=∠CEP=90°,∵∠ACB=90°,∴∠ACB=∠CBD,∴AC∥BD;(3)解:如圖所示:作PM⊥BD于M,∵AC=4,△ABC和△BEC均為等腰直角三角形,∴BE=CE=4,∵△PCE∽△DCB,∴,即,∴BD=,∵∠PBM=∠CBD﹣∠CBP=45°,BP=BE+PE=4+1=5,∴PM=5sin45°=∴△PBD的面積S=BD?PM=××=.本題考查相似三角形的性質和判定,解題的關鍵是掌握相似三角形的性質和判定.23、(1)60°;(2)見解析【解析】
(1)連接BD,由AD為圓的直徑,得到∠ABD為直角,再利用30度角所對的直角邊等于斜邊的一半求出BD的長,根據CD與AB平行,得到一對內錯角相等,確定出∠CDB為直角,在直角三角形BCD中,利用銳角三角函數定義求出tanC的值,即可確定出∠C的度數;(2)連接OB,由OA=OB,利用等邊對等角得到一對角相等,再由CD與AB平行,得到一對同旁內角互補,求出∠ABC度數,由∠ABC﹣∠ABO度數確定出∠OBC度數為90,即可得證;【詳解】(1)如圖,連接BD,∵AD為圓O的直徑,∴∠ABD=90°,∴BD=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 安防維保合同
- 行動實踐面試題目及答案
- 2024園藝師考試行業動態試題及答案
- 花藝師技能大賽試題及答案指導
- 農藝師考試實務2024年試題及答案
- 2024年福建事業單位考試網絡資源利用試題及答案
- 福建事業單位考試知識點鞏固策略試題及答案
- 2024年福建事業單位考試公文書寫試題及答案
- 積極面對園藝師考試歷程試題及答案
- 2024年花藝師考試答題策略與技巧試題及答案
- 智能門鎖銷售合同
- DB3502∕T 139-2024“無陪護”醫院服務規范通 用要求
- 采購崗位招聘面試題及回答建議(某世界500強集團)
- 物流無人機垂直起降場選址與建設規范
- NB-T20200-2013核電廠外部人為事件調查與評價技術規范
- JGJ64-2017飲食建筑設計標準(首發)
- 高速公路小型維修養護施工方案
- 2024萬達商業廣場物業管理合同
- 傳承紅色基因清明緬懷先烈主題班會教案
- 內設部室及人員調整工作方案
- 2024年中國科學技術大學創新科學營測試數學試題真題
評論
0/150
提交評論