




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
海南省保亭縣2021-2022學年中考數學仿真試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,在⊙O中,直徑CD⊥弦AB,則下列結論中正確的是A.AC=AB B.∠C=∠BOD C.∠C=∠B D.∠A=∠B0D2.2017年5月5日國產大型客機C919首飛成功,圓了中國人的“大飛機夢”,它顏值高性能好,全長近39米,最大載客人數168人,最大航程約5550公里.數字5550用科學記數法表示為()A.0.555×104 B.5.55×103 C.5.55×104 D.55.5×1033.下列二次根式中,最簡二次根式是()A. B. C. D.4.觀察下面“品”字形中各數之間的規律,根據觀察到的規律得出a的值為()A.23 B.75 C.77 D.1395.如圖,要使□ABCD成為矩形,需添加的條件是()A.AB=BC B.∠ABC=90° C.AC⊥BD D.∠1=∠26.下列說法錯誤的是()A.的相反數是2 B.3的倒數是C. D.,0,4這三個數中最小的數是07.如圖,在平面直角坐標中,正方形ABCD與正方形BEFG是以原點O為位似中心的位似圖形,且相似比為,點A,B,E在x軸上,若正方形BEFG的邊長為6,則C點坐標為()A.(3,2) B.(3,1) C.(2,2) D.(4,2)8.如圖所示,若將△ABO繞點O順時針旋轉180°后得到△A1B1O,則A點的對應點A1點的坐標是()A.(3,﹣2) B.(3,2) C.(2,3) D.(2,﹣3)9.如圖,AD∥BC,AC平分∠BAD,若∠B=40°,則∠C的度數是()A.40° B.65° C.70° D.80°10.下列圖形中,哪一個是圓錐的側面展開圖?A. B. C. D.11.下列事件是必然事件的是()A.任意作一個平行四邊形其對角線互相垂直B.任意作一個矩形其對角線相等C.任意作一個三角形其內角和為D.任意作一個菱形其對角線相等且互相垂直平分12.下列說法中不正確的是()A.全等三角形的周長相等B.全等三角形的面積相等C.全等三角形能重合D.全等三角形一定是等邊三角形二、填空題:(本大題共6個小題,每小題4分,共24分.)13.可燃冰是一種新型能源,它的密度很小,可燃冰的質量僅為.數字0.00092用科學記數法表示是__________.14.如圖,寬為的長方形圖案由8個相同的小長方形拼成,若小長方形的邊長為整數,則的值為__________.15.有一個正六面體,六個面上分別寫有1~6這6個整數,投擲這個正六面體一次,向上一面的數字是2的倍數或3的倍數的概率是____.16.如圖,點E在正方形ABCD的外部,∠DCE=∠DEC,連接AE交CD于點F,∠CDE的平分線交EF于點G,AE=2DG.若BC=8,則AF=_____.17.如圖,已知AB∥CD,若,則=_____.18.如圖,四邊形OABC是矩形,ADEF是正方形,點A、D在x軸的正半軸上,點C在y軸的正半軸上,點F在AB上,點B、E在反比例函數的圖像上,OA=1,OC=6,則正方形ADEF的邊長為.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)問題提出(1).如圖1,在四邊形ABCD中,AB=BC,AD=CD=3,∠BAD=∠BCD=90°,∠ADC=60°,則四邊形ABCD的面積為_;問題探究(2).如圖2,在四邊形ABCD中,∠BAD=∠BCD=90°,∠ABC=135°,AB=22,BC=3,在AD、CD上分別找一點E、F,使得△BEF的周長最小,作出圖像即可.20.(6分)路邊路燈的燈柱垂直于地面,燈桿的長為2米,燈桿與燈柱成角,錐形燈罩的軸線與燈桿垂直,且燈罩軸線正好通過道路路面的中心線(在中心線上).已知點與點之間的距離為12米,求燈柱的高.(結果保留根號)21.(6分)已知A、B、C三地在同一條路上,A地在B地的正南方3千米處,甲、乙兩人分別從A、B兩地向正北方向的目的地C勻速直行,他們分別和A地的距離s(千米)與所用的時間t(小時)的函數關系如圖所示.(1)圖中的線段l1是(填“甲”或“乙”)的函數圖象,C地在B地的正北方向千米處;(2)誰先到達C地?并求出甲乙兩人到達C地的時間差;(3)如果速度慢的人在兩人相遇后立刻提速,并且比先到者晚1小時到達C地,求他提速后的速度.22.(8分)如圖,在平面直角坐標系中,已知拋物線y=x2+bx+c過A,B,C三點,點A的坐標是(3,0),點C的坐標是(0,-3),動點P在拋物線上.(1)b=_________,c=_________,點B的坐標為_____________;(直接填寫結果)(2)是否存在點P,使得△ACP是以AC為直角邊的直角三角形?若存在,求出所有符合條件的點P的坐標;若不存在,說明理由;(3)過動點P作PE垂直y軸于點E,交直線AC于點D,過點D作x軸的垂線.垂足為F,連接EF,當線段EF的長度最短時,求出點P的坐標.23.(8分)某超市預測某飲料會暢銷、先用1800元購進一批這種飲料,面市后果然供不應求,又用8100元購進這種飲料,第二批飲料的數量是第一批的3倍,但單價比第一批貴2元.第一批飲料進貨單價多少元?若兩次進飲料都按同一價格銷售,兩批全部售完后,獲利不少于2700元,那么銷售單價至少為多少元?24.(10分)如圖,在中,,以邊為直徑作⊙交邊于點,過點作于點,、的延長線交于點.求證:是⊙的切線;若,且,求⊙的半徑與線段的長.25.(10分)已知二次函數的圖象如圖6所示,它與軸的一個交點坐標為,與軸的交點坐標為(0,3).求出此二次函數的解析式;根據圖象,寫出函數值為正數時,自變量的取值范圍.26.(12分)從化市某中學初三(1)班數學興趣小組為了解全校800名初三學生的“初中畢業選擇升學和就業”情況,特對本班50名同學們進行調查,根據全班同學提出的3個主要觀點:A高中,B中技,C就業,進行了調查(要求每位同學只選自己最認可的一項觀點);并制成了扇形統計圖(如圖).請回答以下問題:(1)該班學生選擇觀點的人數最多,共有人,在扇形統計圖中,該觀點所在扇形區域的圓心角是度.(2)利用樣本估計該校初三學生選擇“中技”觀點的人數.(3)已知該班只有2位女同學選擇“就業”觀點,如果班主任從該觀點中,隨機選取2位同學進行調查,那么恰好選到這2位女同學的概率是多少?(用樹形圖或列表法分析解答).27.(12分)如圖,AC⊥BD,DE交AC于E,AB=DE,∠A=∠D.求證:AC=AE+BC.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】
先利用垂徑定理得到弧AD=弧BD,然后根據圓周角定理得到∠C=∠BOD,從而可對各選項進行判斷.【詳解】解:∵直徑CD⊥弦AB,∴弧AD=弧BD,∴∠C=∠BOD.故選B.【點睛】本題考查了垂徑定理和圓周角定理,垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的兩條弧.圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.2、B【解析】
科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>1時,n是正數;當原數的絕對值<1時,n是負數.【詳解】解:5550=5.55×1.故選B.【點睛】本題考查了科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.3、C【解析】
檢查最簡二次根式的兩個條件是否同時滿足,同時滿足的就是最簡二次根式,否則就不是.【詳解】A.被開方數含能開得盡方的因數或因式,故A不符合題意,B.被開方數含能開得盡方的因數或因式,故B不符合題意,C.被開方數不含分母;被開方數不含能開得盡方的因數或因式,故C符合題意,D.被開方數含分母,故D不符合題意.故選C.【點睛】本題考查最簡二次根式的定義,最簡二次根式必須滿足兩個條件:被開方數不含分母;被開方數不含能開得盡方的因數或因式.4、B【解析】
由圖可知:上邊的數與左邊的數的和正好等于右邊的數,上邊的數為連續的奇數,左邊的數為21,22,23,…26,由此可得a,b.【詳解】∵上邊的數為連續的奇數1,3,5,7,9,11,左邊的數為21,22,23,…,∴b=26=1.∵上邊的數與左邊的數的和正好等于右邊的數,∴a=11+1=2.故選B.【點睛】本題考查了數字變化規律,觀察出上邊的數與左邊的數的和正好等于右邊的數是解題的關鍵.5、B【解析】
根據一個角是90度的平行四邊形是矩形進行選擇即可.【詳解】解:A、是鄰邊相等,可判定平行四邊形ABCD是菱形;
B、是一內角等于90°,可判斷平行四邊形ABCD成為矩形;
C、是對角線互相垂直,可判定平行四邊形ABCD是菱形;
D、是對角線平分對角,可判斷平行四邊形ABCD成為菱形;故選:B.【點睛】本題主要應用的知識點為:矩形的判定.①對角線相等且相互平分的四邊形為矩形.②一個角是90度的平行四邊形是矩形.6、D【解析】試題分析:﹣2的相反數是2,A正確;3的倒數是,B正確;(﹣3)﹣(﹣5)=﹣3+5=2,C正確;﹣11,0,4這三個數中最小的數是﹣11,D錯誤,故選D.考點:1.相反數;2.倒數;3.有理數大小比較;4.有理數的減法.7、A【解析】
∵正方形ABCD與正方形BEFG是以原點O為位似中心的位似圖形,且相似比為,∴=,∵BG=6,∴AD=BC=2,∵AD∥BG,∴△OAD∽△OBG,∴=,∴=,解得:OA=1,∴OB=3,∴C點坐標為:(3,2),故選A.8、A【解析】
由題意可知,點A與點A1關于原點成中心對稱,根據圖象確定點A的坐標,即可求得點A1的坐標.【詳解】由題意可知,點A與點A1關于原點成中心對稱,∵點A的坐標是(﹣3,2),∴點A關于點O的對稱點A'點的坐標是(3,﹣2).故選A.【點睛】本題考查了中心對稱的性質及關于原點對稱點的坐標的特征,熟知中心對稱的性質及關于原點對稱點的坐標的特征是解決問題的關鍵.9、C【解析】
根據平行線性質得出∠B+∠BAD=180°,∠C=∠DAC,求出∠BAD,求出∠DAC,即可得出∠C的度數.【詳解】解:∵AD∥BC,∴∠B+∠BAD=180°,∵∠B=40°,∴∠BAD=140°,∵AC平分∠DAB,∴∠DAC=∠BAD=70°,∵A∥BC,∴∠C=∠DAC=70°,故選C.【點睛】本題考查了平行線性質和角平分線定義,關鍵是求出∠DAC或∠BAC的度數.10、B【解析】
根據圓錐的側面展開圖的特點作答.【詳解】A選項:是長方體展開圖.B選項:是圓錐展開圖.C選項:是棱錐展開圖.D選項:是正方體展開圖.故選B.【點睛】考查了幾何體的展開圖,注意圓錐的側面展開圖是扇形.11、B【解析】
必然事件就是一定發生的事件,根據定義對各個選項進行判斷即可.【詳解】解:A、任意作一個平行四邊形其對角線互相垂直不一定發生,是隨機事件,故本選項錯誤;B、矩形的對角線相等,所以任意作一個矩形其對角線相等一定發生,是必然事件,故本選項正確;C、三角形的內角和為180°,所以任意作一個三角形其內角和為是不可能事件,故本選項錯誤;D、任意作一個菱形其對角線相等且互相垂直平分不一定發生,是隨機事件,故選項錯誤,故選:B.【點睛】解決本題需要正確理解必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下一定發生的事件.不可能事件是指在一定條件下,一定不發生的事件.不確定事件即隨機事件是指在一定條件下,可能發生也可能不發生的事件.熟練掌握相關圖形的性質也是解題的關鍵.12、D【解析】
根據全等三角形的性質可知A,B,C命題均正確,故選項均錯誤;D.錯誤,全等三角也可能是直角三角,故選項正確.故選D.【點睛】本題考查全等三角形的性質,兩三角形全等,其對應邊和對應角都相等.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、9.2×10﹣1.【解析】
根據科學記數法的正確表示為,由題意可得0.00092用科學記數法表示是9.2×10﹣1.【詳解】根據科學記數法的正確表示形式可得:0.00092用科學記數法表示是9.2×10﹣1.故答案為:9.2×10﹣1.【點睛】本題主要考查科學記數法的正確表現形式,解決本題的關鍵是要熟練掌握科學記數法的正確表現形式.14、16【解析】
設小長方形的寬為a,長為b,根據大長方形的性質可得5a=3b,m=a+b=a+=,再根據m的取值范圍即可求出a的取值范圍,又因為小長方形的邊長為整數即可解答.【詳解】解:設小長方形的寬為a,長為b,由題意得:5a=3b,所以b=,m=a+b=a+=,因為,所以10<<20,解得:<a<,又因為小長方形的邊長為整數,a=4、5、6、7,因為b=,所以5a是3的倍數,即a=6,b==10,m=a+b=16.故答案為:16.【點睛】本題考查整式的列式、取值,解題關鍵是根據矩形找出小長方形的邊長關系.15、23【解析】∵投擲這個正六面體一次,向上的一面有6種情況,向上一面的數字是2的倍數或3的倍數的有2、3、4、6共4種情況,∴其概率是=.【點睛】此題考查概率的求法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現m種結果,那么事件A的概率P(A)=.16、【解析】
如圖作DH⊥AE于H,連接CG.設DG=x,∵∠DCE=∠DEC,∴DC=DE,∵四邊形ABCD是正方形,∴AD=DC,∠ADF=90°,∴DA=DE,∵DH⊥AE,∴AH=HE=DG,在△GDC與△GDE中,,∴△GDC≌△GDE(SAS),∴GC=GE,∠DEG=∠DCG=∠DAF,∵∠AFD=∠CFG,∴∠ADF=∠CGF=90°,∴2∠GDE+2∠DEG=90°,∴∠GDE+∠DEG=45°,∴∠DGH=45°,在Rt△ADH中,AD=8,AH=x,DH=x,∴82=x2+(x)2,解得:x=,∵△ADH∽△AFD,∴,∴AF==4.故答案為4.17、【解析】【分析】利用相似三角形的性質即可解決問題;【詳解】∵AB∥CD,∴△AOB∽△COD,∴,故答案為.【點睛】本題考查平行線的性質,相似三角形的判定和性質等知識,熟練掌握相似三角形的判定與性質是解題的關鍵.18、2【解析】試題分析:由OA=1,OC=6,可得矩形OABC的面積為6;再根據反比例函數系數k的幾何意義,可知k=6,∴反比例函數的解析式為;設正方形ADEF的邊長為a,則點E的坐標為(a+1,a),∵點E在拋物線上,∴,整理得,解得或(舍去),故正方形ADEF的邊長是2.考點:反比例函數系數k的幾何意義.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)3,(2)見解析【解析】
(1)易證△ABD≌△CBD,再利用含30°的直角三角形求出AB、BD的長,即可求出面積.(2)作點B關于AD的對稱點B’,點B關于CD的對應點B’’,連接B’B’’,與AD、CD交于EF,△AEF即為所求.【詳解】(1)∵AB=BC,AD=CD=3,∠BAD=∠BCD=90°,∴△ABD≌△CBD(HL)∴∠ADB=∠CDB=∠ADC=30°,∴AB=∴S△ABD==∴四邊形ABCD的面積為2S△ABD=(2)作點B關于AD的對稱點B’,點B關于CD的對應點B’’,連接B’B’’,與AD、CD交于EF,△BEF的周長為BE+EF+BF=B’E+EF+B’’F=B’B’’為最短.故此時△BEF的周長最小.【點睛】此題主要考查含30°的直角三角形與對稱性的應用,解題的關鍵是根據題意作出相應的圖形進行求解.20、【解析】
設燈柱BC的長為h米,過點A作AH⊥CD于點H,過點B作BE⊥AH于點E,構造出矩形BCHE,Rt△AEB,然后解直角三角形求解.【詳解】解:設燈柱的長為米,過點作于點過點做于點∴四邊形為矩形,∵∴又∵∴在中,∴∴又∴在中,解得,(米)∴燈柱的高為米.21、(1)乙;3;(2)甲先到達,到達目的地的時間差為小時;(3)速度慢的人提速后的速度為千米/小時.【解析】分析:(1)根據題意結合所給函數圖象進行判斷即可;(2)由所給函數圖象中的信息先求出二人所對應的函數解析式,再由解析式結合圖中信息求出二人到達C地的時間并進行比較、判斷即可得到本問答案;(3)根據圖象中的信息結合(2)中的結論進行解答即可.詳解:(1)由題意結合圖象中的信息可知:圖中線段l1是乙的圖象;C地在B地的正北方6-3=3(千米)處.(2)甲先到達.設甲的函數解析式為s=kt,則有4=t,∴s=4t.∴當s=6時,t=.設乙的函數解析式為s=nt+3,則有4=n+3,即n=1.∴乙的函數解析式為s=t+3.∴當s=6時,t=3.∴甲、乙到達目的地的時間差為:(小時).(3)設提速后乙的速度為v千米/小時,∵相遇處距離A地4千米,而C地距A地6千米,∴相遇后需行2千米.又∵原來相遇后乙行2小時才到達C地,∴乙提速后2千米應用時1.5小時.即,解得:,答:速度慢的人提速后的速度為千米/小時.點睛:本題考查的是由函數圖象中獲取相關信息來解決問題的能力,解題的關鍵是結合題意弄清以下兩點:(1)函數圖象上點的橫坐標和縱坐標各自所表示是實際意義;(2)圖象中各關鍵點(起點、終點、交點和轉折點)的實際意義.22、(1),,(-1,0);(2)存在P的坐標是或;(1)當EF最短時,點P的坐標是:(,)或(,)【解析】
(1)將點A和點C的坐標代入拋物線的解析式可求得b、c的值,然后令y=0可求得點B的坐標;(2)分別過點C和點A作AC的垂線,將拋物線與P1,P2兩點先求得AC的解析式,然后可求得P1C和P2A的解析式,最后再求得P1C和P2A與拋物線的交點坐標即可;(1)連接OD.先證明四邊形OEDF為矩形,從而得到OD=EF,然后根據垂線段最短可求得點D的縱坐標,從而得到點P的縱坐標,然后由拋物線的解析式可求得點P的坐標.【詳解】解:(1)∵將點A和點C的坐標代入拋物線的解析式得:,解得:b=﹣2,c=﹣1,∴拋物線的解析式為.∵令,解得:,,∴點B的坐標為(﹣1,0).故答案為﹣2;﹣1;(﹣1,0).(2)存在.理由:如圖所示:①當∠ACP1=90°.由(1)可知點A的坐標為(1,0).設AC的解析式為y=kx﹣1.∵將點A的坐標代入得1k﹣1=0,解得k=1,∴直線AC的解析式為y=x﹣1,∴直線CP1的解析式為y=﹣x﹣1.∵將y=﹣x﹣1與聯立解得,(舍去),∴點P1的坐標為(1,﹣4).②當∠P2AC=90°時.設AP2的解析式為y=﹣x+b.∵將x=1,y=0代入得:﹣1+b=0,解得b=1,∴直線AP2的解析式為y=﹣x+1.∵將y=﹣x+1與聯立解得=﹣2,=1(舍去),∴點P2的坐標為(﹣2,5).綜上所述,P的坐標是(1,﹣4)或(﹣2,5).(1)如圖2所示:連接OD.由題意可知,四邊形OFDE是矩形,則OD=EF.根據垂線段最短,可得當OD⊥AC時,OD最短,即EF最短.由(1)可知,在Rt△AOC中,∵OC=OA=1,OD⊥AC,∴D是AC的中點.又∵DF∥OC,∴DF=OC=,∴點P的縱坐標是,∴,解得:x=,∴當EF最短時,點P的坐標是:(,)或(,).23、(1)4元/瓶.(2)銷售單價至少為1元/瓶.【解析】
(1)設第一批飲料進貨單價為x元/瓶,則第二批飲料進貨單價為(x+2)元/瓶,根據數量=總價÷單價結合第二批購進飲料的數量是第一批的3倍,即可得出關于x的分式方程,解之經檢驗后即可得出結論;(2)由數量=總價÷單價可得出第一、二批購進飲料的數量,設銷售單價為y元/瓶,根據利潤=銷售單價×銷售數量﹣進貨總價結合獲利不少于2100元,即可得出關于y的一元一次不等式,解之取其最小值即可得出結論.【詳解】(1)設第一批飲料進貨單價為x元/瓶,則第二批飲料進貨單價為(x+2)元/瓶,依題意,得:=3×,解得:x=4,經檢驗,x=4是原方程的解,且符合題意.答:第一批飲料進貨單價是4元/瓶;(2)由(1)可知:第一批購進該種飲料450瓶,第二批購進該種飲料1350瓶.設銷售單價為y元/瓶,依題意,得:(450+1350)y﹣1800﹣8100≥2100,解得:y≥1.答:銷售單價至少為1元/瓶.【點睛】本題考查了分式方程的應用以及一元一次不等式的應用,解題的關鍵是:(1)找準等量關系,正確列出二元一次方程組;(2)根據各數量之間的關系,正確列出一元一次不等式.24、(1)證明參見解析;(2)半徑長為,=.【解析】
(1)已知點D在圓上,要連半徑證垂直,連結,則,所以,∵,∴.∴,∴∥.由得出,于是得出結論;(2)由得到,設,則.,,,由,解得值,進而求出圓的半徑及AE長.【詳解】解:(1)已知點D在圓上,要連半徑證垂直,如圖2所示,連結,∵,∴.∵,∴.∴,∴∥.∵,∴.∴是⊙的切線;(2)在和中,∵,∴.設,則.∴,.∵,∴.∴,解得=,則3x=,AE=6×-=6,∴⊙的半徑長為,=.【點睛】1.圓的切線的判定;
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025兩人合伙人合作協議合同范本
- 2025跨境電商合同模板
- 2025網絡技術合作代理合同模板
- 2025版咨詢服務合同模板
- 伐木工程合同范本
- 遵守行為規范主題班會
- 2025年關于建筑工程合同管理的法規
- 2025教育機構教師勞動合同模板
- 酒店客房制度培訓講課
- 酒店餐廳新員工培訓計劃
- 高等數學(第五版)課件 3.1 微分中值定理與洛必達法則
- 眼科器械清洗消毒操作流程培訓考試試題
- 基于學科核心素養的高中體育與健康學業質量與學習評價解讀-汪曉贊
- 湖北省武漢市江岸區2023-2024學年八年級下學期期中物理試題(原卷版)
- 福建省建筑與市政地基基礎技術標準
- DL∕T 5776-2018 水平定向鉆敷設電力管線技術規定
- AQ 1011-2005 煤礦在用主通風機系統安全檢測檢驗規范(正式版)
- 一年級數學下冊100以內加減法口算練習題一
- 蜜雪冰城員工管理制度
- (高清版)JTG 3370.1-2018 公路隧道設計規范 第一冊 土建工程
- 2024年西安鐵路職業技術學院單招職業適應性測試題庫必考題
評論
0/150
提交評論