2024-2025學年廣東省佛山市三水區中考數學試題命題比賽模擬試卷(12)含解析_第1頁
2024-2025學年廣東省佛山市三水區中考數學試題命題比賽模擬試卷(12)含解析_第2頁
2024-2025學年廣東省佛山市三水區中考數學試題命題比賽模擬試卷(12)含解析_第3頁
2024-2025學年廣東省佛山市三水區中考數學試題命題比賽模擬試卷(12)含解析_第4頁
2024-2025學年廣東省佛山市三水區中考數學試題命題比賽模擬試卷(12)含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024-2025學年廣東省佛山市三水區中考數學試題命題比賽模擬試卷(12)注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,在矩形ABCD中,E,F分別是邊AB,CD上的點,AE=CF,連接EF,BF,EF與對角線AC交于點O,且BE=BF,∠BEF=2∠BAC,FC=2,則AB的長為()A.8 B.8 C.4 D.62.小張同學制作了四張材質和外觀完全一樣的書簽,每個書簽上寫著一本書的名稱或一個作者姓名,分別是:《西游記》、施耐庵、《安徒生童話》、安徒生,從這四張書簽中隨機抽取兩張,則抽到的書簽正好是相對應的書名和作者姓名的概率是()A. B. C. D.3.如圖,立體圖形的俯視圖是A. B. C. D.4.每個人都應懷有對水的敬畏之心,從點滴做起,節水、愛水,保護我們生活的美好世界.某地近年來持續干旱,為倡導節約用水,該地采用了“階梯水價”計費方法,具體方法:每戶每月用水量不超過4噸的每噸2元;超過4噸而不超過6噸的,超出4噸的部分每噸4元;超過6噸的,超出6噸的部分每噸6元.該地一家庭記錄了去年12個月的月用水量如下表,下列關于用水量的統計量不會發生改變的是()用水量x(噸)34567頻數1254﹣xxA.平均數、中位數B.眾數、中位數C.平均數、方差D.眾數、方差5.已知,,且,則的值為()A.2或12 B.2或 C.或12 D.或6.(2017?鄂州)如圖四邊形ABCD中,AD∥BC,∠BCD=90°,AB=BC+AD,∠DAC=45°,E為CD上一點,且∠BAE=45°.若CD=4,則△ABE的面積為()A.127B.247C.487.鄭州某中學在備考2018河南中考體育的過程中抽取該校九年級20名男生進行立定跳遠測試,以便知道下一階段的體育訓練,成績如下所示:成績(單位:米)2.102.202.252.302.352.402.452.50人數23245211則下列敘述正確的是()A.這些運動員成績的眾數是5B.這些運動員成績的中位數是2.30C.這些運動員的平均成績是2.25D.這些運動員成績的方差是0.07258.如圖,在平面直角坐標系中Rt△ABC的斜邊BC在x軸上,點B坐標為(1,0),AC=2,∠ABC=30°,把Rt△ABC先繞B點順時針旋轉180°,然后再向下平移2個單位,則A點的對應點A′的坐標為()A.(﹣4,﹣2﹣) B.(﹣4,﹣2+) C.(﹣2,﹣2+) D.(﹣2,﹣2﹣)9.在平面直角坐標系中,正方形A1B1C1D1、D1E1E2B2、A2B2C2D2、D2E3E4B3…按如圖所示的方式放置,其中點B1在y軸上,點C1、E1、E2、C2、E3、E4、C3…在x軸上,已知正方形A1B1C1D1的邊長為l,∠B1C1O=60°,B1C1∥B2C2∥B3C3…,則正方形A2017B2017C2017D2017的邊長是()A.(12)2016B.(12)2017C.(33)2016D.(10.如圖1,在矩形ABCD中,動點E從A出發,沿A→B→C方向運動,當點E到達點C時停止運動,過點E作EF⊥AE交CD于點F,設點E運動路程為x,CF=y,如圖2所表示的是y與x的函數關系的大致圖象,給出下列結論:①a=3;②當CF=時,點E的運動路程為或或,則下列判斷正確的是()A.①②都對 B.①②都錯 C.①對②錯 D.①錯②對二、填空題(共7小題,每小題3分,滿分21分)11.如圖,直線a∥b,∠BAC的頂點A在直線a上,且∠BAC=100°.若∠1=34°,則∠2=_____°.12.如圖甲,對于平面上不大于90°的∠MON,我們給出如下定義:如果點P在∠MON的內部,作PE⊥OM,PF⊥ON,垂足分別為點E、F,那么稱PE+PF的值為點P相對于∠MON的“點角距離”,記為d(P,∠MON).如圖乙,在平面直角坐標系xOy中,點P在坐標平面內,且點P的橫坐標比縱坐標大2,對于∠xOy,滿足d(P,∠xOy)=10,點P的坐標是_____.13.如圖,垂直于x軸的直線AB分別與拋物線C1:y=x2(x≥0)和拋物線C2:y=(x≥0)交于A,B兩點,過點A作CD∥x軸分別與y軸和拋物線C2交于點C、D,過點B作EF∥x軸分別與y軸和拋物線C1交于點E、F,則的值為_____.14.如圖,MN是⊙O的直徑,MN=4,∠AMN=40°,點B為弧AN的中點,點P是直徑MN上的一個動點,則PA+PB的最小值為_____.15.如果=k(b+d+f≠0),且a+c+e=3(b+d+f),那么k=_____.16.如圖,△ABC中,AB=AC,D是AB上的一點,且AD=AB,DF∥BC,E為BD的中點.若EF⊥AC,BC=6,則四邊形DBCF的面積為____.17.三角形的每條邊的長都是方程的根,則三角形的周長是.三、解答題(共7小題,滿分69分)18.(10分)某經銷商從市場得知如下信息:A品牌手表B品牌手表進價(元/塊)700100售價(元/塊)900160他計劃用4萬元資金一次性購進這兩種品牌手表共100塊,設該經銷商購進A品牌手表x塊,這兩種品牌手表全部銷售完后獲得利潤為y元.試寫出y與x之間的函數關系式;若要求全部銷售完后獲得的利潤不少于1.26萬元,該經銷商有哪幾種進貨方案;選擇哪種進貨方案,該經銷商可獲利最大;最大利潤是多少元.19.(5分)先化簡(-a+1)÷,并從0,-1,2中選一個合適的數作為a的值代入求值.20.(8分)如圖所示,在坡角為30°的山坡上有一豎立的旗桿AB,其正前方矗立一墻,當陽光與水平線成45°角時,測得旗桿AB落在坡上的影子BD的長為8米,落在墻上的影子CD的長為6米,求旗桿AB的高(結果保留根號).21.(10分)如圖,點C在線段AB上,AD∥EB,AC=BE,AD=BC,CF平分∠DCE.求證:CF⊥DE于點F.22.(10分)如圖,在中,,為邊上的中線,于點E.求證:;若,,求線段的長.23.(12分)如圖,已知反比例函數y=的圖象與一次函數y=x+b的圖象交于點A(1,4),點B(﹣4,n).求n和b的值;求△OAB的面積;直接寫出一次函數值大于反比例函數值的自變量x的取值范圍.24.(14分)如圖1,在平面直角坐標系中,直線y=﹣x+1與拋物線y=ax2+bx+c(a≠0)相交于點A(1,0)和點D(﹣4,5),并與y軸交于點C,拋物線的對稱軸為直線x=﹣1,且拋物線與x軸交于另一點B.(1)求該拋物線的函數表達式;(2)若點E是直線下方拋物線上的一個動點,求出△ACE面積的最大值;(3)如圖2,若點M是直線x=﹣1的一點,點N在拋物線上,以點A,D,M,N為頂點的四邊形能否成為平行四邊形?若能,請直接寫出點M的坐標;若不能,請說明理由.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】分析:連接OB,根據等腰三角形三線合一的性質可得BO⊥EF,再根據矩形的性質可得OA=OB,根據等邊對等角的性質可得∠BAC=∠ABO,再根據三角形的內角和定理列式求出∠ABO=30°,即∠BAC=30°,根據直角三角形30°角所對的直角邊等于斜邊的一半求出AC,再利用勾股定理列式計算即可求出AB.詳解:如圖,連接OB,∵BE=BF,OE=OF,∴BO⊥EF,∴在Rt△BEO中,∠BEF+∠ABO=90°,由直角三角形斜邊上的中線等于斜邊上的一半可知:OA=OB=OC,∴∠BAC=∠ABO,又∵∠BEF=2∠BAC,即2∠BAC+∠BAC=90°,解得∠BAC=30°,∴∠FCA=30°,∴∠FBC=30°,∵FC=2,∴BC=2,∴AC=2BC=4,∴AB===6,故選D.點睛:本題考查了矩形的性質,全等三角形的判定與性質,等腰三角形三線合一的性質,直角三角形30°角所對的直角邊等于斜邊的一半,綜合題,但難度不大,(2)作輔助線并求出∠BAC=30°是解題的關鍵.2、D【解析】

根據題意先畫出樹狀圖得出所有等情況數和到的書簽正好是相對應的書名和作者姓名的情況數,再根據概率公式即可得出答案.【詳解】解:根據題意畫圖如下:共有12種等情況數,抽到的書簽正好是相對應的書名和作者姓名的有2種情況,則抽到的書簽正好是相對應的書名和作者姓名的概率是=;故選D.此題考查的是用列表法或樹狀圖法求概率.列表法可以不重復不遺漏的列出所有可能的結果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;解題時要注意此題是放回實驗還是不放回實驗.用到的知識點為:概率=所求情況數與總情況數之比.3、C【解析】試題分析:立體圖形的俯視圖是C.故選C.考點:簡單組合體的三視圖.4、B【解析】

由頻數分布表可知后兩組的頻數和為4,即可得知頻數之和,結合前兩組的頻數知第6、7個數據的平均數,可得答案.【詳解】∵6噸和7噸的頻數之和為4-x+x=4,∴頻數之和為1+2+5+4=12,則這組數據的中位數為第6、7個數據的平均數,即5+52∴對于不同的正整數x,中位數不會發生改變,∵后兩組頻數和等于4,小于5,∴對于不同的正整數x,眾數不會發生改變,眾數依然是5噸.故選B.本題主要考查頻數分布表及統計量的選擇,由表中數據得出數據的總數是根本,熟練掌握平均數、中位數、眾數的定義和計算方法是解題的關鍵.5、D【解析】

根據=5,=7,得,因為,則,則=5-7=-2或-5-7=-12.故選D.6、D【解析】解:如圖取CD的中點F,連接BF延長BF交AD的延長線于G,作FH⊥AB于H,EK⊥AB于K.作BT⊥AD于T.∵BC∥AG,∴∠BCF=∠FDG,∵∠BFC=∠DFG,FC=DF,∴△BCF≌△GDF,∴BC=DG,BF=FG,∵AB=BC+AD,AG=AD+DG=AD+BC,∴AB=AG,∵BF=FG,∴BF⊥BG,∠ABF=∠G=∠CBF,∵FH⊥BA,FC⊥BC,∴FH=FC,易證△FBC≌△FBH,△FAH≌△FAD,∴BC=BH,AD=AB,由題意AD=DC=4,設BC=TD=BH=x,在Rt△ABT中,∵AB2=BT2+AT2,∴(x+4)2=42+(4﹣x)2,∴x=1,∴BC=BH=TD=1,AB=5,設AK=EK=y,DE=z,∵AE2=AK2+EK2=AD2+DE2,BE2=BK2+KE2=BC2+EC2,∴42+z2=y2①,(5﹣y)2+y2=12+(4﹣z)2②,由①②可得y=207,∴S△ABE=12×5×207點睛:本題考查直角梯形的性質、全等三角形的判定和性質、角平分線的性質定理、勾股定理、二元二次方程組等知識,解題的關鍵是學會添加常用輔助線,學會利用參數,構建方程解決問題,屬于中考壓軸題.7、B【解析】

根據方差、平均數、中位數和眾數的計算公式和定義分別對每一項進行分析,即可得出答案.【詳解】由表格中數據可得:A、這些運動員成績的眾數是2.35,錯誤;B、這些運動員成績的中位數是2.30,正確;C、這些運動員的平均成績是2.30,錯誤;D、這些運動員成績的方差不是0.0725,錯誤;故選B.考查了方差、平均數、中位數和眾數,熟練掌握定義和計算公式是本題的關鍵,平均數平均數表示一組數據的平均程度.中位數是將一組數據從小到大(或從大到?。┲匦屡帕泻?,最中間的那個數(或最中間兩個數的平均數);方差是用來衡量一組數據波動大小的量.8、D【解析】解:作AD⊥BC,并作出把Rt△ABC先繞B點順時針旋轉180°后所得△A1BC1,如圖所示.∵AC=2,∠ABC=10°,∴BC=4,∴AB=2,∴AD===,∴BD===1.∵點B坐標為(1,0),∴A點的坐標為(4,).∵BD=1,∴BD1=1,∴D1坐標為(﹣2,0),∴A1坐標為(﹣2,﹣).∵再向下平移2個單位,∴A′的坐標為(﹣2,﹣﹣2).故選D.點睛:本題主要考查了直角三角形的性質,勾股定理,旋轉的性質和平移的性質,作出圖形利用旋轉的性質和平移的性質是解答此題的關鍵.9、C【解析】利用正方形的性質結合銳角三角函數關系得出正方形的邊長,進而得出變化規律即可得出答案.解:如圖所示:∵正方形A1B1C1D1的邊長為1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…∴D1E1=B2E2,D2E3=B3E4,∠D1C1E1=∠C2B2E2=∠C3B3E4=30°,∴D1E1=C1D1sin30°=,則B2C2===()1,同理可得:B3C3==()2,故正方形AnBnCnDn的邊長是:()n﹣1.則正方形A2017B2017C2017D2017的邊長是:()2.故選C.“點睛”此題主要考查了正方形的性質以及銳角三角函數關系,得出正方形的邊長變化規律是解題關鍵.10、A【解析】

由已知,AB=a,AB+BC=5,當E在BC上時,如圖,可得△ABE∽△ECF,繼而根據相似三角形的性質可得y=﹣,根據二次函數的性質可得﹣,由此可得a=3,繼而可得y=﹣,把y=代入解方程可求得x1=,x2=,由此可求得當E在AB上時,y=時,x=,據此即可作出判斷.【詳解】解:由已知,AB=a,AB+BC=5,當E在BC上時,如圖,∵E作EF⊥AE,∴△ABE∽△ECF,∴,∴,∴y=﹣,∴當x=時,﹣,解得a1=3,a2=(舍去),∴y=﹣,當y=時,=﹣,解得x1=,x2=,當E在AB上時,y=時,x=3﹣=,故①②正確,故選A.本題考查了二次函數的應用,相似三角形的判定與性質,綜合性較強,弄清題意,正確畫出符合條件的圖形,熟練運用二次函數的性質以及相似三角形的判定與性質是解題的關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、46【解析】試卷分析:根據平行線的性質和平角的定義即可得到結論.解:∵直線a∥b,∴∠3=∠1=34°,∵∠BAC=100°,∴∠2=180°?34°?100°=46°,故答案為46°.12、(6,4)或(﹣4,﹣6)【解析】

設點P的橫坐標為x,表示出縱坐標,然后列方程求出x,再求解即可.【詳解】解:設點P的橫坐標為x,則點P的縱坐標為x-2,由題意得,

當點P在第一象限時,x+x-2=10,

解得x=6,

∴x-2=4,

∴P(6,4);

當點P在第三象限時,-x-x+2=10,

解得x=-4,

∴x-2=-6,

∴P(-4,-6).

故答案為:(6,4)或(-4,-6).本題主要考查了點的坐標,讀懂題目信息,理解“點角距離”的定義并列出方程是解題的關鍵.13、【解析】

根據二次函數的圖象和性質結合三角形面積公式求解.【詳解】解:設點橫坐標為,則點縱坐標為,點B的縱坐標為,∵BE∥x軸,∴點F縱坐標為,∵點F是拋物線上的點,∴點F橫坐標為,∵軸,∴點D縱坐標為,∵點D是拋物線上的點,∴點D橫坐標為,,故答案為.此題重點考查學生對二次函數的圖象和性質的應用能力,熟練掌握二次函數的圖象和性質是解題的關鍵.14、2【解析】

過A作關于直線MN的對稱點A′,連接A′B,由軸對稱的性質可知A′B即為PA+PB的最小值,【詳解】解:連接OB,OA′,AA′,∵AA′關于直線MN對稱,∴∵∠AMN=40°,∴∠A′ON=80°,∠BON=40°,∴∠A′OB=120°,過O作OQ⊥A′B于Q,在Rt△A′OQ中,OA′=2,

∴A′B=2A′Q=即PA+PB的最小值.本題考查軸對稱求最小值問題及解直角三角形,根據軸對稱的性質準確作圖是本題的解題關鍵.15、3【解析】∵=k,∴a=bk,c=dk,e=fk,∴a+c+e=bk+dk+fk=k(a+b+c),∵a+c+e=3(b+d+f),∴k=3,故答案為:3.16、2【解析】

解:如圖,過D點作DG⊥AC,垂足為G,過A點作AH⊥BC,垂足為H,∵AB=AC,點E為BD的中點,且AD=AB,∴設BE=DE=x,則AD=AF=1x.∵DG⊥AC,EF⊥AC,∴DG∥EF,∴,即,解得.∵DF∥BC,∴△ADF∽△ABC,∴,即,解得DF=1.又∵DF∥BC,∴∠DFG=∠C,∴Rt△DFG∽Rt△ACH,∴,即,解得.在Rt△ABH中,由勾股定理,得.∴.又∵△ADF∽△ABC,∴,∴∴.故答案為:2.17、6或2或12【解析】

首先用因式分解法求得方程的根,再根據三角形的每條邊的長都是方程的根,進行分情況計算.【詳解】由方程,得=2或1.當三角形的三邊是2,2,2時,則周長是6;當三角形的三邊是1,1,1時,則周長是12;當三角形的三邊長是2,2,1時,2+2=1,不符合三角形的三邊關系,應舍去;當三角形的三邊是1,1,2時,則三角形的周長是1+1+2=2.綜上所述此三角形的周長是6或12或2.三、解答題(共7小題,滿分69分)18、(1)y=140x+6000;(2)三種,答案見解析;(3)選擇方案③進貨時,經銷商可獲利最大,最大利潤是13000元.【解析】

(1)根據利潤y=(A售價﹣A進價)x+(B售價﹣B進價)×(100﹣x)列式整理即可;(2)全部銷售后利潤不少于1.26萬元得到一元一次不等式組,求出滿足題意的x的正整數值即可;(3)利用y與x的函數關系式的增減性來選擇哪種方案獲利最大,并求此時的最大利潤即可.【詳解】解:(1)y=(900﹣700)x+(160﹣100)×(100﹣x)=140x+6000.由700x+100(100﹣x)≤40000得x≤50.∴y與x之間的函數關系式為y=140x+6000(x≤50)(2)令y≥12600,即140x+6000≥12600,解得x≥47.1.又∵x≤50,∴經銷商有以下三種進貨方案:方案A品牌(塊)B品牌(塊)①4852②4951③5050(3)∵140>0,∴y隨x的增大而增大.∴x=50時y取得最大值.又∵140×50+6000=13000,∴選擇方案③進貨時,經銷商可獲利最大,最大利潤是13000元.本題考查由實際問題列函數關系式;一元一次不等式的應用;一次函數的應用.19、1.【解析】試題分析:首先把括號的分式通分化簡,后面的分式的分子分解因式,然后約分化簡,接著計算分式的乘法,最后代入數值計算即可求解.試題解析:原式===;當a=0時,原式=1.考點:分式的化簡求值.20、旗桿AB的高為(4+1)m.【解析】試題分析:過點C作CE⊥AB于E,過點B作BF⊥CD于F.在Rt△BFD中,分別求出DF、BF的長度.在Rt△ACE中,求出AE、CE的長度,繼而可求得AB的長度.試題解析:解:過點C作CE⊥AB于E,過點B作BF⊥CD于F,過點B作BF⊥CD于F.在Rt△BFD中,∵∠DBF=30°,sin∠DBF==,cos∠DBF==.∵BD=8,∴DF=4,BF=.∵AB∥CD,CE⊥AB,BF⊥CD,∴四邊形BFCE為矩形,∴BF=CE=4,CF=BE=CD﹣DF=1.在Rt△ACE中,∠ACE=45°,∴AE=CE=4,∴AB=4+1(m).答:旗桿AB的高為(4+1)m.21、證明見解析.【解析】

根據平行線性質得出∠A=∠B,根據SAS證△ACD≌△BEC,推出DC=CE,根據等腰三角形的三線合一定理推出即可.【詳解】∵AD∥BE,∴∠A=∠B.在△ACD和△BEC中∵,∴△ACD≌△BEC(SAS),∴DC=CE.∵CF平分∠DCE,∴CF⊥DE(三線合一).本題考查了全等三角形的性質和判定,平行線的性質,等腰三角形的性質等知識點,關鍵是求出DC=CE,主要考查了學生運用定理進行推理的能力.22、(1)見解析;(2).【解析】

對于(1),由已知條件可以得到∠B=∠C,△ABC是等腰三角形,利用等腰三角形的性質易得AD⊥BC,∠ADC=90°;接下來不難得到∠ADC=∠BED,至此問題不難證明;對于(2),利用勾股定理求出AD,利用相似比,即可求出DE.【詳解】解:(1)證明:∵,∴.又∵為邊上的中線,∴.∵,∴,∴.(2)∵,∴.在中,根據勾股定理,得.由(1)得,∴,即,∴.此題考查相似三角形的判定與性質,解題關鍵在于掌握判定定理.23、(1)-1;(2);(3)x>1或﹣4<x<0.【解析】

(1)把A點坐標分別代入反比例函數與一次函數解析式,求出k和b的值,把B點坐標代入反比例函數解析式求出n的值即可;(2)設直線y=x+3與y軸的交點為C,由S△AOB=S△AOC+S△BOC,根據A、B兩點坐標及C點坐標,利用三角形面積公式即可得答案;(3)利用函數圖像,根據A、B兩點坐標即可得答案.【詳解】(1)把A點(1,4)分別代入反比例函數y=,一次函數y=x+b,得k=1×4,1+b=4,解得k=4,b=3,∵點B(﹣4,n)也在反比例函數y=的圖象上,∴n==﹣1;(2)如圖,設直線y=x+3與y軸的交點為C,∵當x=0時,y=3,∴C(0,3),∴S△AOB=S△AOC+S△BOC=×3×1+×3×4=7.5,(3)∵B(﹣4,﹣1),A(1,4),∴根據圖象可知:當x>1或﹣4<x<0時,一次函數值大于反比例函數值.本題主要考查了待定系數法求反比例函數與一次函數的解析式和反比例

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論