




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
浙江省杭十四中2024-2025學年高三下學期第六次周練(數學試題文)試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線(a>0,b>0)的右焦點為F,若過點F且傾斜角為60°的直線l與雙曲線的右支有且只有一個交點,則此雙曲線的離心率e的取值范圍是()A. B.(1,2), C. D.2.已知雙曲線的兩條漸近線與拋物線的準線分別交于點、,O為坐標原點.若雙曲線的離心率為2,三角形AOB的面積為,則p=().A.1 B. C.2 D.33.已知為非零向量,“”為“”的()A.充分不必要條件 B.充分必要條件C.必要不充分條件 D.既不充分也不必要條件4.在關于的不等式中,“”是“恒成立”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件5.已知點P在橢圓τ:=1(a>b>0)上,點P在第一象限,點P關于原點O的對稱點為A,點P關于x軸的對稱點為Q,設,直線AD與橢圓τ的另一個交點為B,若PA⊥PB,則橢圓τ的離心率e=()A. B. C. D.6.如圖,平面四邊形中,,,,,現將沿翻折,使點移動至點,且,則三棱錐的外接球的表面積為()A. B. C. D.7.如圖,在四邊形中,,,,,,則的長度為()A. B.C. D.8.設等比數列的前項和為,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件9.已知雙曲線滿足以下條件:①雙曲線E的右焦點與拋物線的焦點F重合;②雙曲線E與過點的冪函數的圖象交于點Q,且該冪函數在點Q處的切線過點F關于原點的對稱點.則雙曲線的離心率是()A. B. C. D.10.將函數圖象上每一點的橫坐標變為原來的2倍,再將圖像向左平移個單位長度,得到函數的圖象,則函數圖象的一個對稱中心為()A. B. C. D.11.已知函數的圖象在點處的切線方程是,則()A.2 B.3 C.-2 D.-312.閱讀下面的程序框圖,運行相應的程序,程序運行輸出的結果是()A.1.1 B.1 C.2.9 D.2.8二、填空題:本題共4小題,每小題5分,共20分。13.的二項展開式中,含項的系數為__________.14.為激發學生團結協作,敢于拼搏,不言放棄的精神,某校高三5個班進行班級間的拔河比賽.每兩班之間只比賽1場,目前(—)班已賽了4場,(二)班已賽了3場,(三)班已賽了2場,(四)班已賽了1場.則目前(五)班已經參加比賽的場次為__________.15.設等差數列的前項和為,若,,則______,的最大值是______.16.函數滿足,當時,,若函數在上有1515個零點,則實數的范圍為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱柱中,底面為菱形,.(1)證明:平面平面;(2)若,是等邊三角形,求二面角的余弦值.18.(12分)11月,2019全國美麗鄉村籃球大賽在中國農村改革的發源地-安徽鳳陽舉辦,其間甲、乙兩人輪流進行籃球定點投籃比賽(每人各投一次為一輪),在相同的條件下,每輪甲乙兩人在同一位置,甲先投,每人投一次球,兩人有1人命中,命中者得1分,未命中者得-1分;兩人都命中或都未命中,兩人均得0分,設甲每次投球命中的概率為,乙每次投球命中的概率為,且各次投球互不影響.(1)經過1輪投球,記甲的得分為,求的分布列;(2)若經過輪投球,用表示經過第輪投球,累計得分,甲的得分高于乙的得分的概率.①求;②規定,經過計算機計算可估計得,請根據①中的值分別寫出a,c關于b的表達式,并由此求出數列的通項公式.19.(12分)已知函數,曲線在點處的切線方程為求a,b的值;證明:.20.(12分)在四邊形中,,;如圖,將沿邊折起,連結,使,求證:(1)平面平面;(2)若為棱上一點,且與平面所成角的正弦值為,求二面角的大小.21.(12分)如圖,在四棱柱中,平面,底面ABCD滿足∥BC,且(Ⅰ)求證:平面;(Ⅱ)求直線與平面所成角的正弦值.22.(10分)在直角坐標系中,以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為,曲線的極坐標方程為.(1)求曲線的直角坐標方程和曲線的參數方程;(2)設曲線與曲線在第二象限的交點為,曲線與軸的交點為,點,求的周長的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】
若過點且傾斜角為的直線與雙曲線的右支有且只有一個交點,則該直線的斜率的絕對值小于等于漸近線的斜率.根據這個結論可以求出雙曲線離心率的取值范圍.【詳解】已知雙曲線的右焦點為,若過點且傾斜角為的直線與雙曲線的右支有且只有一個交點,則該直線的斜率的絕對值小于等于漸近線的斜率,,離心率,,故選:.本題考查雙曲線的性質及其應用,解題時要注意挖掘隱含條件.2.C【解析】試題分析:拋物線的準線為,雙曲線的離心率為2,則,,漸近線方程為,求出交點,,,則;選C考點:1.雙曲線的漸近線和離心率;2.拋物線的準線方程;3.B【解析】
由數量積的定義可得,為實數,則由可得,根據共線的性質,可判斷;再根據判斷,由等價法即可判斷兩命題的關系.【詳解】若成立,則,則向量與的方向相同,且,從而,所以;若,則向量與的方向相同,且,從而,所以.所以“”為“”的充分必要條件.故選:B本題考查充分條件和必要條件的判定,考查相等向量的判定,考查向量的模、數量積的應用.4.C【解析】
討論當時,是否恒成立;討論當恒成立時,是否成立,即可選出正確答案.【詳解】解:當時,,由開口向上,則恒成立;當恒成立時,若,則不恒成立,不符合題意,若時,要使得恒成立,則,即.所以“”是“恒成立”的充要條件.故選:C.本題考查了命題的關系,考查了不等式恒成立問題.對于探究兩個命題的關系時,一般分成兩步,若,則推出是的充分條件;若,則推出是的必要條件.5.C【解析】
設,則,,,設,根據化簡得到,得到答案.【詳解】設,則,,,則,設,則,兩式相減得到:,,,即,,,故,即,故,故.故選:.本題考查了橢圓的離心率,意在考查學生的計算能力和轉化能力.6.C【解析】
由題意可得面,可知,因為,則面,于是.由此推出三棱錐外接球球心是的中點,進而算出,外接球半徑為1,得出結果.【詳解】解:由,翻折后得到,又,則面,可知.又因為,則面,于是,因此三棱錐外接球球心是的中點.計算可知,則外接球半徑為1,從而外接球表面積為.故選:C.本題主要考查簡單的幾何體、球的表面積等基礎知識;考查空間想象能力、推理論證能力、運算求解能力及創新意識,屬于中檔題.7.D【解析】
設,在中,由余弦定理得,從而求得,再由由正弦定理得,求得,然后在中,用余弦定理求解.【詳解】設,在中,由余弦定理得,則,從而,由正弦定理得,即,從而,在中,由余弦定理得:,則.故選:D本題主要考查正弦定理和余弦定理的應用,還考查了數形結合的思想和運算求解的能力,屬于中檔題.8.C【解析】
根據等比數列的前項和公式,判斷出正確選項.【詳解】由于數列是等比數列,所以,由于,所以,故“”是“”的充分必要條件.故選:C本小題主要考查充分、必要條件的判斷,考查等比數列前項和公式,屬于基礎題.9.B【解析】
由已知可求出焦點坐標為,可求得冪函數為,設出切點通過導數求出切線方程的斜率,利用斜率相等列出方程,即可求出切點坐標,然后求解雙曲線的離心率.【詳解】依題意可得,拋物線的焦點為,F關于原點的對稱點;,,所以,,設,則,解得,∴,可得,又,,可解得,故雙曲線的離心率是.故選B.本題考查雙曲線的性質,已知拋物線方程求焦點坐標,求冪函數解析式,直線的斜率公式及導數的幾何意義,考查了學生分析問題和解決問題的能力,難度一般.10.D【解析】
根據函數圖象的變換規律可得到解析式,然后將四個選項代入逐一判斷即可.【詳解】解:圖象上每一點的橫坐標變為原來的2倍,得到再將圖像向左平移個單位長度,得到函數的圖象,故選:D考查三角函數圖象的變換規律以及其有關性質,基礎題.11.B【解析】
根據求出再根據也在直線上,求出b的值,即得解.【詳解】因為,所以所以,又也在直線上,所以,解得所以.故選:B本題主要考查導數的幾何意義,意在考查學生對這些知識的理解掌握水平.12.C【解析】
根據程序框圖的模擬過程,寫出每執行一次的運行結果,屬于基礎題.【詳解】初始值,第一次循環:,;第二次循環:,;第三次循環:,;第四次循環:,;第五次循環:,;第六次循環:,;第七次循環:,;第九次循環:,;第十次循環:,;所以輸出.故選:C本題考查了循環結構的程序框圖的讀取以及運行結果,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
寫出二項展開式的通項,然后取的指數為求得的值,則項的系數可求得.【詳解】,由,可得.含項的系數為.故答案為:本題考查了二項式定理展開式、需熟記二項式展開式的通項公式,屬于基礎題.14.2【解析】
根據比賽場次,分析,畫出圖象,計算結果.【詳解】畫圖所示,可知目前(五)班已經賽了2場.故答案為:2本題考查推理,計數原理的圖形表示,意在考查數形結合分析問題的能力,屬于基礎題型.15.【解析】
利用等差數列前項和公式,列出方程組,求出首項和公差的值,利用等差數列的通項公式可求出數列的通項公式,可求出的表達式,然后利用雙勾函數的單調性可求出的最大值.【詳解】(1)設等差數列的公差為,則,解得,所以,數列的通項公式為;(2),,令,則且,,由雙勾函數的單調性可知,函數在時單調遞減,在時單調遞增,當或時,取得最大值為.故答案為:;.本題考查等差數列的通項公式、前項和的求法,考查等差數列的性質等基礎知識,考查運算求解能力,是中檔題.16.【解析】
由已知,在上有3個根,分,,,四種情況討論的單調性、最值即可得到答案.【詳解】由已知,的周期為4,且至多在上有4個根,而含505個周期,所以在上有3個根,設,,易知在上單調遞減,在,上單調遞增,又,.若時,在上無根,在必有3個根,則,即,此時;若時,在上有1個根,注意到,此時在不可能有2個根,故不滿足;若時,要使在有2個根,只需,解得;若時,在上單調遞增,最多只有1個零點,不滿足題意;綜上,實數的范圍為.故答案為:本題考查利用導數研究函數的零點個數問題,涉及到函數的周期性、分類討論函數的零點,是一道中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)證明見解析(2)【解析】
(1)根據面面垂直的判定定理可知,只需證明平面即可.由為菱形可得,連接和與的交點,由等腰三角形性質可得,即能證得平面;(2)由題意知,平面,可建立空間直角坐標系,以為坐標原點,所在直線為軸,所在直線為軸,所在直線為軸,再分別求出平面的法向量,平面的法向量,即可根據向量法求出二面角的余弦值.【詳解】(1)如圖,設與相交于點,連接,又為菱形,故,為的中點.又,故.又平面,平面,且,故平面,又平面,所以平面平面.(2)由是等邊三角形,可得,故平面,所以,,兩兩垂直.如圖以為坐標原點,所在直線為軸,所在直線為軸,所在直線為軸,建立空間直角坐標系.不妨設,則,,則,,,,,,設為平面的法向量,則即可取,設為平面的法向量,則即可取,所以.所以二面角的余弦值為0.本題主要考查線面垂直的判定定理,面面垂直的判定定理的應用,以及利用向量法求二面角,意在考查學生的直觀想象能力,邏輯推理能力和數學運算能力,屬于基礎題.18.(1)分布列見解析;(2)①;②,.【解析】
(1)經過1輪投球,甲的得分的取值為,記一輪投球,甲投中為事件,乙投中為事件,相互獨立,計算概率后可得分布列;(2)由(1)得,由兩輪的得分可計算出,計算時可先計算出經過2輪后甲的得分的分布列(的取值為),然后結合的分布列和的分布可計算,由,代入,得兩個方程,解得,從而得到數列的遞推式,變形后得是等比數列,由等比數列通項公式得,然后用累加法可求得.【詳解】(1)記一輪投球,甲命中為事件,乙命中為事件,相互獨立,由題意,,甲的得分的取值為,,,,∴的分布列為:-101(2)由(1),,同理,經過2輪投球,甲的得分取值:記,,,則,,,,由此得甲的得分的分布列為:-2-1012∴,∵,,∴,,∴,代入得:,∴,∴數列是等比數列,公比為,首項為,∴.∴.本題考查隨機變量的概率分布列,考查相互獨立事件同時發生的概率,考查由數列的遞推式求通項公式,考查學生的轉化與化歸思想,本題難點在于求概率分布列,特別是經過2輪投球后甲的得分的概率分布列,這里可用列舉法寫出各種可能,然后由獨立事件的概率公式計算出概率.19.(1);(2)見解析【解析】分析:第一問結合導數的幾何意義以及切點在切線上也在函數圖像上,從而建立關于的等量關系式,從而求得結果;第二問可以有兩種方法,一是將不等式轉化,構造新函數,利用導數研究函數的最值,從而求得結果,二是利用中間量來完成,這樣利用不等式的傳遞性來完成,再者這種方法可以簡化運算.詳解:(1)解:,由題意有,解得(2)證明:(方法一)由(1)知,.設則只需證明,設則,在上單調遞增,,使得且當時,,當時,當時,,單調遞減當時,,單調遞增,由,得,,設,,當時,,在單調遞減,,因此(方法二)先證當時,,即證設,則,且,在單調遞增,在單調遞增,則當時,(也可直接分析顯然成立)再證設,則,令,得且當時,,單調遞減;當時,,單調遞增.,即又,點睛:該題考查的是有關利用導數研究函數的綜合問題,在求解的過程中,涉及到的知識點有導數的幾何意義,有關切線的問題,還有就是應用導數證明不等式,可以構造新函數,轉化為最值問題來解決,也可以借用不等式的傳遞性,借助中間量來完成.20.(1)證明見詳解;(2)【解析】
(1)由題可知,等腰直角三角形與等邊三角形,在其公共邊AC上取中點O,連接、,可得,可求出.在中,由勾股
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年的企業與個人之間的借款合同范本
- 2025實驗室租賃合同示范文本
- 2025年事務所律師聘請合同
- 材料租賃簡易合同范本
- 趣味頭像線描課件
- 2025關于YY公司租賃合同的審計案例
- 酒店宴會怎做培訓課件
- 毀傷評估報告合同范本
- 住院醫師規范化培訓-內科學真題庫-33
- 國醫堂裝修合同范本
- 1《諫太宗十思疏》公開課一等獎創新教學設計統編版高中語文必修下冊
- 2024年湖北省中考地理生物試卷(含答案)
- 21《莊子》二則 北冥有魚 公開課一等獎創新教案
- JBT 5928-2014 工程機械 驅動橋 試驗方法
- 小升初小學生簡歷模板
- 幼兒園中班繪本課件-《小金魚逃走了》
- 2023-2024學年三年級下學期綜合實踐活動水果拼盤教案
- 2024國家糧食和物資儲備局垂直管理系事業單位招聘筆試參考題庫含答案解析
- DBJ∕T15-232-2021 混凝土氯離子控制標準
- 2024年安全員C3證考試題庫附答案
- GB/T 43643-2024澳洲堅果
評論
0/150
提交評論