廣東省汕頭潮南區(qū)四校聯(lián)考2025屆九上數(shù)學(xué)期末達(dá)標(biāo)檢測試題含解析_第1頁
廣東省汕頭潮南區(qū)四校聯(lián)考2025屆九上數(shù)學(xué)期末達(dá)標(biāo)檢測試題含解析_第2頁
廣東省汕頭潮南區(qū)四校聯(lián)考2025屆九上數(shù)學(xué)期末達(dá)標(biāo)檢測試題含解析_第3頁
廣東省汕頭潮南區(qū)四校聯(lián)考2025屆九上數(shù)學(xué)期末達(dá)標(biāo)檢測試題含解析_第4頁
廣東省汕頭潮南區(qū)四校聯(lián)考2025屆九上數(shù)學(xué)期末達(dá)標(biāo)檢測試題含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

廣東省汕頭潮南區(qū)四校聯(lián)考2025屆九上數(shù)學(xué)期末達(dá)標(biāo)檢測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.下列四個圖形中,既是軸對稱圖形又是中心對稱圖形的有()A.4個B.3個C.2個D.1個2.在正方形ABCD中,AB=3,點E在邊CD上,且DE=1,將△ADE沿AE對折到△AFE,延長EF交邊BC于點G,連接AG,CF.下列結(jié)論,其中正確的有()個.(1)CG=FG;(2)∠EAG=45°;(3)S△EFC=;(4)CF=GEA.1 B.2 C.3 D.43.下列物體的光線所形成的投影是平行投影的是()A.臺燈 B.手電筒 C.太陽 D.路燈4.二次函數(shù)y=ax2+bx+c的部分對應(yīng)值如下表x﹣3﹣2﹣1012y﹣12﹣50343利用二次函數(shù)的圖象可知,當(dāng)函數(shù)值y>0時,x的取值范圍是()A.0<x<2 B.x<0或x>2 C.﹣1<x<3 D.x<﹣1或x>35.在△ABC中,若|cosA.45° B.60° C.75° D.105°6.若,則的值為()A. B. C. D.7.已知正方形的邊長為4cm,則其對角線長是()A.8cm B.16cm C.32cm D.cm8.反比例函數(shù)y=﹣的圖象在()A.第二、四象限 B.第一、三象限 C.第一、二象限 D.第三、四象限9.如圖,在平行四邊形中::若,則()A. B. C. D.10.如圖,分別以等邊三角形ABC的三個頂點為圓心,以邊長為半徑畫弧,得到的封閉圖形是萊洛三角形,若AB=2,則萊洛三角形的面積(即陰影部分面積)為()A. B. C.2 D.2二、填空題(每小題3分,共24分)11.太原市某學(xué)校門口的欄桿如圖所示,欄桿從水平位置繞定點旋轉(zhuǎn)到位置,已知欄桿的長為的長為點到的距離為.支柱的高為,則欄桿端離地面的距離為__________.12.如圖,邊長為4的正六邊形ABCDEF的中心與坐標(biāo)原點O重合,AF∥軸,將正六邊形ABCDEF繞原點O順時針旋轉(zhuǎn),每次旋轉(zhuǎn)60°,則第2019次后,頂點A的坐標(biāo)為_______.13.若點、在二次函數(shù)的圖象上,則的值為________.14.如圖,將Rt△ABC繞著頂點A逆時針旋轉(zhuǎn)使得點C落在AB上的C′處,點B落在B′處,聯(lián)結(jié)BB′,如果AC=4,AB=5,那么BB′=_____.15.如圖,已知⊙O的半徑為2,四邊形ABCD是⊙O的內(nèi)接四邊形,∠ABC=∠AOC,且AD=CD,則圖中陰影部分的面積等于______.16.如圖,在中,,若,則__________.17.已知,.且,設(shè),則的取值范圍是______.18.如圖,把正方形鐵片OABC置于平面直角坐標(biāo)系中,頂點A的坐標(biāo)為(3,0),點P(1,2)在正方形鐵片上,將正方形鐵片繞其右下角的頂點按順時針方向依次旋轉(zhuǎn)90°,第一次旋轉(zhuǎn)至圖(1)位置,第二次旋轉(zhuǎn)至圖(2)位置…,則正方形鐵片連續(xù)旋轉(zhuǎn)2018次后,點P的縱坐標(biāo)為_________.三、解答題(共66分)19.(10分)如圖,在△ABC中,AB=AC.(1)若以點A為圓心的圓與邊BC相切于點D,請在下圖中作出點D;(要求:尺規(guī)作圖,不寫作法,保留作圖痕跡)(2)在(1)的條件下,若該圓與邊AC相交于點E,連接DE,當(dāng)∠BAC=100°時,求∠AED的度數(shù).20.(6分)一節(jié)數(shù)學(xué)課后,老師布置了一道課后練習(xí)題:如圖1,是的直徑,點在上,,垂足為,,分別交、于點、.求證:.圖1圖2(1)本題證明的思路可用下列框圖表示:根據(jù)上述思路,請你完整地書寫本題的證明過程.(2)如圖2,若點和點在的兩側(cè),、的延長線交于點,的延長線交于點,其余條件不變,(1)中的結(jié)論還成立嗎?請說明理由;(3)在(2)的條件下,若,,求的長.21.(6分)如圖,一根豎直的木桿在離地面3.1處折斷,木桿頂端落在地面上,且與地面成38°角,則木桿折斷之前高度約為__________.(參考數(shù)據(jù):)22.(8分)如圖,正方形ABCD中,點F是BC邊上一點,連結(jié)AF,以AF為對角線作正方形AEFG,邊FG與正方形ABCD的對角線AC相交于點H,連結(jié)DG.(1)填空:若∠BAF=18°,則∠DAG=______°.(2)證明:△AFC∽△AGD;(3)若=,請求出的值.23.(8分)某班“數(shù)學(xué)興趣小組”對函數(shù)y=x2﹣2|x|的圖象和性質(zhì)進(jìn)行了探究,探究過程如下,請補(bǔ)充完整.(1)自變量x的取值范圍是全體實數(shù),x與y的幾組對應(yīng)值列表如下:x…﹣3﹣﹣2﹣10123…y…3m﹣10﹣103…其中,m=.(2)根據(jù)表中數(shù)據(jù),在如圖所示的平面直角坐標(biāo)系中描點,并畫出了函數(shù)圖象的一部分,請畫出該函數(shù)圖象的另一部分.(3)觀察函數(shù)圖象,寫出兩條函數(shù)的性質(zhì).(4)進(jìn)一步探究函數(shù)圖象發(fā)現(xiàn):①函數(shù)圖象與x軸有個交點,所以對應(yīng)的方程x2﹣2|x|=0有個實數(shù)根;②方程x2﹣2|x|=2有個實數(shù)根.③關(guān)于x的方程x2﹣2|x|=a有4個實數(shù)根時,a的取值范圍是.24.(8分)某商店如果將進(jìn)貨價為8元的商品按每件11元售出,每天可銷售211件.現(xiàn)在采取提高售價,減少售貨量的方法增加利潤,已知這種商品每漲價1.5元,其銷量減少11件.(1)若漲價x元,則每天的銷量為____________件(用含x的代數(shù)式表示);(2)要使每天獲得711元的利潤,請你幫忙確定售價.25.(10分)如圖,在平面直角坐標(biāo)系中,直線與直線,交點的橫坐標(biāo)為,將直線,沿軸向下平移個單位長度,得到直線,直線,與軸交于點,與直線,交于點,點的縱坐標(biāo)為,直線;與軸交于點.(1)求直線的解析式;(2)求的面積26.(10分)在中,AB=6,BC=4,B為銳角且cosB.(1)求∠B的度數(shù).(2)求的面積.(3)求tanC.

參考答案一、選擇題(每小題3分,共30分)1、B【解析】試題分析:A選項既是軸對稱圖形,也是中心對稱圖形;B選項中該圖形是軸對稱圖形不是中心對稱圖形;C選項中既是中心對稱圖形又是軸對稱圖形;D選項中是中心對稱圖形又是軸對稱圖形.故選B.考點:1.軸對稱圖形;2.中心對稱圖形.2、C【分析】(1)根據(jù)翻折可得AD=AF=AB=3,進(jìn)而可以證明△ABG≌△AFG,再設(shè)CG=x,利用勾股定理可求得x的值,即可證明CG=FG;(2)由(1)△ABG≌△AFG,可得∠BAG=∠FAG,進(jìn)而可得∠EAG=45°;(3)過點F作FH⊥CE于點H,可得FH∥CG,通過對應(yīng)邊成比例可求得FH的長,進(jìn)而可求得S△EFC=;(4)根據(jù)(1)求得的x的長與EF不相等,進(jìn)而可以判斷CF≠GE.【詳解】解:如圖所示:(1)∵四邊形ABCD為正方形,∴AD=AB=BC=CD=3,∠BAD=∠B=∠BCD=∠D=90°,由折疊可知:AF=AD=3,∠AFE=∠D=90°,DE=EF=1,則CE=2,∴AB=AF=3,AG=AG,∴Rt△ABG≌Rt△AFG(HL),∴BG=FG,設(shè)CG=x,則BG=FG=3﹣x,∴EG=4﹣x,EC=2,根據(jù)勾股定理,得在Rt△EGC中,(4﹣x)2=x2+4,解得x=,則3﹣x=,∴CG=FG,所以(1)正確;(2)由(1)中Rt△ABG≌Rt△AFG(HL),∴∠BAG=∠FAG,又∠DAE=∠FAE,∴∠BAG+∠FAG+∠DAE+∠FAE=90°,∴∠EAG=45°,所以(2)正確;(3)過點F作FH⊥CE于點H,∴FH∥BC,∴,即1:(+1)=FH:(),∴FH=,∴S△EFC=×2×=,所以(3)正確;(4)∵GF=,EF=1,點F不是EG的中點,CF≠GE,所以(4)錯誤.所以(1)、(2)、(3)正確.故選:C.【點睛】此題考查正方形的性質(zhì),翻折的性質(zhì),全等三角形的判定及性質(zhì),勾股定理求線段長度,平行線分線段成比例,正確掌握各知識點并運用解題是關(guān)鍵.3、C【解析】太陽相對地球較遠(yuǎn)且大,其發(fā)出的光線可認(rèn)為是平行光線.【詳解】臺燈、手電筒、路燈發(fā)出的光線是由點光源發(fā)出的光線,所形成的投影是中心投影;太陽相對地球較遠(yuǎn)且大,其發(fā)出的光線可認(rèn)為是平行光線.故選C【點睛】本題主要考查了中心投影、平行投影的概念.4、C【分析】函數(shù)值y=1對應(yīng)的自變量值是:-1、3,在它們之間的函數(shù)值都是正數(shù).由此可得y>1時,x的取值范圍.【詳解】從表格可以看出,二次函數(shù)的對稱軸為直線x=1,故當(dāng)x=﹣1或3時,y=1;因此當(dāng)﹣1<x<3時,y>1.故選C.【點睛】本題主要考查了二次函數(shù)與x軸的交點、二次函數(shù)的性質(zhì)等知識,解題的關(guān)鍵是要認(rèn)真觀察,利用表格中的信息解決問題.5、C【分析】根據(jù)非負(fù)數(shù)的性質(zhì)可得出cosA及tanB的值,繼而可得出A和B的度數(shù),根據(jù)三角形的內(nèi)角和定理可得出∠C的度數(shù).【詳解】由題意,得

cosA=12,tanB=1,

∴∠A=60°,∠B=45°,

∴∠C=180°-∠A-∠B=180°-60°-45°=75°.

故選C6、B【分析】根據(jù)算術(shù)平方根、絕對值的非負(fù)性分別解得的值,再計算即可.【詳解】故選:B.【點睛】本題考查二次根式、絕對值的非負(fù)性、冪的運算等知識,是重要考點,難度較易,掌握相關(guān)知識是解題關(guān)鍵.7、D【分析】作一個邊長為4cm的正方形,連接對角線,構(gòu)成一個直角三角形如下圖所示:由勾股定理得AC2=AB2+BC2,求出AC的值即可.【詳解】解:如圖所示:四邊形ABCD是邊長為4cm的正方形,在Rt△ABC中,由勾股定理得:AC==4cm.所以對角線的長:AC=4cm.故選D.8、A【解析】根據(jù)反比例函數(shù)y=(k≠0)的圖象,當(dāng)k>0時位于第一、三象限,在每個象限內(nèi),y隨x的增大而減??;當(dāng)k<0時圖象位于第二、四象限,在每個象限內(nèi),y隨x的增大而增大可得:∵k=-2<0,

∴函數(shù)圖象在二、四象限.

故選B.【點睛】反比例函數(shù)y=(k≠0)的圖象:當(dāng)k>0時位于第一、三象限,在每個象限內(nèi),y隨x的增大而減小;當(dāng)k<0時圖象位于第二、四象限,在每個象限內(nèi),y隨x的增大而增大.9、A【分析】先根據(jù)平行四邊形的性質(zhì)得到AB=CD,AB∥CD,再計算出AE:CD=1:3,接著證明△AEF∽△CDF,然后根據(jù)相似三角形的性質(zhì)求解.【詳解】∵四邊形ABCD為平行四邊形,

∴AB=CD,AB∥CD,

∵,

∴,

∴,

∵AE∥CD,

∴,

∴,

∴.

故選:A.【點睛】本題考查的是相似三角形的判定與性質(zhì),熟知相似三角形面積的比等于相似比的平方是解答此題的關(guān)鍵.10、D【解析】萊洛三角形的面積是由三塊相同的扇形疊加而成,其面積=三塊扇形的面積相加,再減去兩個等邊三角形的面積,分別求出即可.【詳解】過A作AD⊥BC于D,∵△ABC是等邊三角形,∴AB=AC=BC=2,∠BAC=∠ABC=∠ACB=60°,∵AD⊥BC,∴BD=CD=1,AD=BD=,∴△ABC的面積為BC?AD==,S扇形BAC==,∴萊洛三角形的面積S=3×﹣2×=2π﹣2,故選D.【點睛】本題考查了等邊三角形的性質(zhì)和扇形的面積計算,能根據(jù)圖形得出萊洛三角形的面積=三塊扇形的面積相加、再減去兩個等邊三角形的面積是解此題的關(guān)鍵.二、填空題(每小題3分,共24分)11、【分析】作DF⊥ABCG⊥AB,根據(jù)題意得△ODF∽△OCB,,得出DF,D端離地面的距離為DF+OE,即可求出.【詳解】解:如圖作DF⊥AB垂足為F,CG⊥AB垂足為G;∴∠DFO=∠CGO=90°∵∠DOA=∠COB∴△DFO∽△CGO則∵CG=0.3mOD=OA=3mOC=OB=3.5-3=0.5m∴DF=1.8m則D端離地面的距離=DF+OE=1.8+0.5=2.3m【點睛】此題主要考查了相似三角形的應(yīng)用,熟練掌握相似三角形的判定與性質(zhì)是解題的關(guān)鍵.12、【分析】將正六邊形ABCDEF繞原點O逆時針旋轉(zhuǎn)2019次時,點A所在的位置就是原D點所在的位置.【詳解】2019×60°÷360°=336…3,即與正六邊形ABCDEF繞原點O逆時針旋轉(zhuǎn)3次時點A的坐標(biāo)是一樣的.當(dāng)點A按逆時針旋轉(zhuǎn)180°時,與原D點重合.連接OD,過點D作DH⊥x軸,垂足為H;由已知ED=1,∠DOE=60°(正六邊形的性質(zhì)),∴△OED是等邊三角形,∴OD=DE=OE=1.∵DH⊥OE,∴∠ODH=30°,OH=HE=2,HD=.∵D在第四象限,∴D,即旋轉(zhuǎn)2019后點A的坐標(biāo)是.故答案為.【點睛】本題考查了正多邊形和圓、旋轉(zhuǎn)變換的性質(zhì),掌握正多邊形的性質(zhì)、旋轉(zhuǎn)變換的性質(zhì)是解題的關(guān)鍵.13、-1【分析】利用拋物線的對稱性得到點A和點B為拋物線上的對稱點,根據(jù)二次函數(shù)的性質(zhì)得到拋物線的對稱軸為直線x=?2,從而得到m?(?2)=?2?(?3),然后解方程即可.【詳解】∵點A(?3,n)、B(m,n),∴點A和點B為拋物線上的對稱點,∵二次函數(shù)的圖象的對稱軸為直線x=?2,∴m?(?2)=?2?(?3),∴m=?1.故答案為:?1.【點睛】本題考查了二次函數(shù)圖象上點的坐標(biāo)特征:二次函數(shù)圖象上點的坐標(biāo)滿足其解析式.也考查了二次函數(shù)的性質(zhì).14、【分析】根據(jù)旋轉(zhuǎn)的性質(zhì)和勾股定理,在Rt△BC′B′中,求出BC′,B′C′即可解決問題.【詳解】解:在Rt△ABC中,∵AC=4,AB=5,∠C=90°,∴BC===3,∵AC=AC′=4,BC=B′C′=3,∴BC′=AB=AC′=5﹣4=1,∵∠BC′B′=90°,∴BB′===,故答案為.【點睛】此題考查的是旋轉(zhuǎn)的性質(zhì)和勾股定理,掌握旋轉(zhuǎn)的性質(zhì)和利用勾股定理解直角三角形是解決此題的關(guān)鍵.15、π﹣【分析】根據(jù)題意可以得出三角形ACD是等邊三角形,進(jìn)而求出∠AOD,再根據(jù)直角三角形求出OE、AD,從而從扇形的面積減去三角形AOD的面積即可得出陰影部分的面積.【詳解】解:連接AC,OD,過點O作OE⊥AD,垂足為E,∵∠ABC=∠AOC,∠AOC=2∠ADC,∠ABC+∠ADC=180°,∴∠ABC=120°,∠ADC=60°,∵AD=CD,∴△ACD是正三角形,∴∠AOD=120°,OE=2×cos60°=1,AD=2×sin60°×2=2,∴S陰影部分=S扇形OAD﹣S△AOD=×π×22﹣×2×1=π﹣,故答案為:π﹣.【點睛】本題主要考察扇形的面積和三角形的面積,熟練掌握面積公式及計算法則是解題關(guān)鍵.16、6【分析】先根據(jù)平行四邊形的性質(zhì)證得△BEG∽△FAG,從而可得相似比,然后根據(jù)同高的兩個三角形的面積等于底邊之比可求得,根據(jù)相似三角形的性質(zhì)可求得,進(jìn)而可得答案.【詳解】解:∵四邊形ABCD是平行四邊形,∴AD=BC,AD∥BC,∴△BEG∽△FAG,∵,∴,∴,∵,∴,,∴.故答案為:6.【點睛】本題考查了平行四邊形的性質(zhì)、相似三角形的判定和性質(zhì)以及三角形的面積等知識,屬于常考題型,熟練掌握平行四邊形的性質(zhì)和相似三角形的判定與性質(zhì)是解答的關(guān)鍵.17、【分析】先根據(jù)已知得出n=1-m,將其代入y中,得出y關(guān)于m的二次函數(shù)即可得出y的范圍【詳解】解:∵∴n=1-m,∴∵,∴,∴當(dāng)m=時,y有最小值,當(dāng)m=0時,y=1當(dāng)m=1時,y=1∴故答案為:【點睛】本題考查了二次函數(shù)的最值問題,熟練掌握二次函數(shù)的性質(zhì)是解題的關(guān)鍵18、1【分析】由旋轉(zhuǎn)方式和正方形性質(zhì)可知點P的位置4次一個循環(huán),首先根據(jù)旋轉(zhuǎn)的性質(zhì)求出P1~P5的坐標(biāo),探究規(guī)律后,再利用規(guī)律解決問題.【詳解】解:∵頂點A的坐標(biāo)為(3,0),點P(1,2),∴第一次旋轉(zhuǎn)90°后,對應(yīng)的P1(5,2),

第二次P2(8,1),

第三次P3(10,1),

第四次P4(13,2),

第五次P5(17,2),

發(fā)現(xiàn)點P的位置4次一個循環(huán),

∵2018÷4=504余2,

P2018的縱坐標(biāo)與P2相同為1,故答案為:1.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì):對應(yīng)點到旋轉(zhuǎn)中心的距離相等;對應(yīng)點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;旋轉(zhuǎn)前、后的圖形全等.也考查了坐標(biāo)與圖形的變化、規(guī)律型:點的坐標(biāo)等知識,解題的關(guān)鍵是學(xué)會從特殊到一般的探究規(guī)律的方法,屬于中考常考題型.三、解答題(共66分)19、(1)詳見解析;(2)65°.【分析】(1)分析題干可知:作AD⊥BC,由于AB=AC,由等腰三角形的性質(zhì)可知當(dāng)AD平分∠BAC即可滿足:以點A為圓心的圓與邊BC相切于點D;(2)由AD平分∠BAC,可得由圓A半徑相等AD=AE,可得∠ADE=∠AED,即可得出答案.【詳解】解:(1)如圖所示,點D為所求(2)如圖:∵AD平分∠BAC∴在中,AD=AE,∴∠ADE=∠AED∴【點睛】本題考查作圖,切線的判定和性質(zhì)等知識,掌握圓的基本性質(zhì)是解題的關(guān)鍵.20、(1)見解析;(2)成立,理由見解析;(3)【分析】(1)如圖1中,延長CD交⊙O于H.想辦法證明∠3=∠4即可解決問題.(2)成立,證明方法類似(1).(3)構(gòu)建方程組求出BD,DF即可解決問題.【詳解】(1)延長交于;∵為直徑,∴.∵∴∴∴∵為直徑∴∴,∴∴(2)成立;∵為直徑,∴.∵∴∴∴∵為直徑∴∴,∴∴(3)由(2)得:,∵,∴,∴,解得:,,∴,∴.【點睛】本題考查圓周角定理,垂徑定理,勾股定理等知識,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題,屬于中考常考題型.21、8.1m【分析】由題意得,在直角三角形中,知道了兩直角邊,運用勾股定理即可求出斜邊,從而得出這棵樹折斷之前的高度.【詳解】解:如圖:,∴,∴木桿折斷之前高度故答案為m【點睛】本題考查勾股定理的應(yīng)用,熟練掌握運算法則是解題關(guān)鍵.22、(1)27;(2)證明見解析;(3)=.【分析】(1)由四邊形ABCD,AEFG是正方形,得到∠BAC=∠GAF=45°,于是得到∠BAF+∠FAC=∠FAC+∠GAC=45°,推出∠HAG=∠BAF=18°,由于∠DAG+∠GAH=∠DAC=45°,于是得到結(jié)論;(2)由四邊形ABCD,AEFG是正方形,推出==,得=,由于∠DAG=∠CAF,得到△ADG∽△CAF,列比例式即可得到結(jié)果;(3)設(shè)BF=k,CF=2k,則AB=BC=3k,根據(jù)勾股定理得到AF===k,AC=AB=3k,由于∠AFH=∠ACF,∠FAH=∠CAF,于是得到△AFH∽△ACF,得到比例式即可得到結(jié)論.【詳解】解:(1)∵四邊形ABCD,AEFG是正方形,∴∠BAC=∠GAF=45°,∴∠BAF+∠FAC=∠FAC+∠GAC=45°,∴∠HAG=∠BAF=18°,∵∠DAG+∠GAH=∠DAC=45°,∴∠DAG=45°﹣18°=27°,故答案為:27.(2)∵四邊形ABCD,AEFG是正方形,∴=,=,∴=,∵∠DAG+∠GAC=∠FAC+∠GAC=45°,∴∠DAG=∠CAF,∴△AFC∽△AGD;(3)∵=,設(shè)BF=k,∴CF=2k,則AB=BC=3k,∴AF===k,AC=AB=3k,∵四邊形ABCD,AEFG是正方形,∴∠AFH=∠ACF,∠FAH=∠CAF,∴△AFH∽△ACF,∴,∴==.【點睛】本題考查了正方形的性質(zhì),相似三角形的判定和性質(zhì),勾股定理,找準(zhǔn)相似三角形是解題的關(guān)鍵.23、(1)1;(2)作圖見解析;(3)①函數(shù)y=x2﹣2|x|的圖象關(guān)于y軸對稱;②當(dāng)x>1時,y隨x的增大而增大;(答案不唯一)(4)3,3,2,﹣1<a<1.【解析】(1)把x=-2代入y=x2-2|x|得y=1,

即m=1,

故答案為:1;

(2)如圖所示;(3)由函數(shù)圖象知:①函數(shù)y=x2-2|x|的圖象關(guān)于y軸對稱;②當(dāng)x>1時,y隨x的增大而增大;

(4)①由函數(shù)圖象知:函數(shù)圖象與x軸有3個交點,所以對應(yīng)的方程x2-2|x|=1有3個實數(shù)根;

②如圖,∵y=x2-2|x|的圖象與直線y=2有兩個交點,

∴x2-2|x|=2有2個實數(shù)根;

③由函數(shù)圖象知:∵關(guān)于x的方程x2-2|x|=a有4個實數(shù)根,

∴a的取值范圍是-1<a<1,

故答案為:3,3,2,-1<a<1.24、(1)211-21x;(2)12元.【解析】試題分析:(1)如果設(shè)每件商品提高x元,即可用x表示出每天的銷售量;(2)根據(jù)總利潤=單價利潤×銷售量列出關(guān)于x的方程,進(jìn)而求出未知數(shù)的值.試題解析:解:(1)211-21

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論