




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年寧夏回族自治區銀川五中重點中學中考數學最后沖刺模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,菱形中,對角線AC、BD交于點O,E為AD邊中點,菱形ABCD的周長為28,則OE的長等于()A.3.5 B.4 C.7 D.142.一元一次不等式2(1+x)>1+3x的解集在數軸上表示為()A. B. C. D.3.在函數y=中,自變量x的取值范圍是()A.x≥0 B.x≤0 C.x=0 D.任意實數4.如圖,排球運動員站在點O處練習發球,將球從O點正上方2m的A處發出,把球看成點,其運行的高度y(m)與運行的水平距離x(m)滿足關系式y=a(x﹣k)2+h.已知球與D點的水平距離為6m時,達到最高2.6m,球網與D點的水平距離為9m.高度為2.43m,球場的邊界距O點的水平距離為18m,則下列判斷正確的是()A.球不會過網 B.球會過球網但不會出界C.球會過球網并會出界 D.無法確定5.估計﹣1的值在()A.1和2之間 B.2和3之間 C.3和4之間 D.4和5之間6.已知線段AB=8cm,點C是直線AB上一點,BC=2cm,若M是AB的中點,N是BC的中點,則線段MN的長度為()A.5cm B.5cm或3cm C.7cm或3cm D.7cm7.如圖:A、B、C、D四點在一條直線上,若AB=CD,下列各式表示線段AC錯誤的是()A.AC=AD﹣CD B.AC=AB+BCC.AC=BD﹣AB D.AC=AD﹣AB8.如圖,、是的切線,點在上運動,且不與,重合,是直徑.,當時,的度數是()A. B. C. D.9.青藏高原是世界上海拔最高的高原,它的面積是2500000平方千米.將2500000用科學記數法表示應為()A. B. C. D.10.若關于的一元二次方程有兩個不相等的實數根,則的取值范圍()A. B. C.且 D.二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,⊙O中,弦AB、CD相交于點P,若∠A=30°,∠APD=70°,則∠B等于_____.12.如圖,在Rt△ABC中,AB=AC,D、E是斜邊BC上的兩點,且∠DAE=45°,將△ADC繞點A順時針旋轉90°后,得到△AFB,連接EF,下列結論:①∠EAF=45°;②△AED≌△AEF;③△ABE∽△ACD;④BE1+DC1=DE1.其中正確的是______.(填序號)13.已知a、b是方程x2﹣2x﹣1=0的兩個根,則a2﹣a+b的值是_______.14.如圖,在兩個同心圓中,三條直徑把大、小圓都分成相等的六個部分,若隨意向圓中投球,球落在黑色區域的概率是______.15.某次數學測試,某班一個學習小組的六位同學的成績如下:84、75、75、92、86、99,則這六位同學成績的中位數是_____.16.如圖,點、、在直線上,點,,在直線上,以它們為頂點依次構造第一個正方形,第二個正方形,若的橫坐標是1,則的坐標是______,第n個正方形的面積是______.三、解答題(共8題,共72分)17.(8分)如圖,已知平行四邊形ABCD,點M、N分別是邊DC、BC的中點,設=,=,求向量關于、的分解式.18.(8分)在中,,BD為AC邊上的中線,過點C作于點E,過點A作BD的平行線,交CE的延長線于點F,在AF的延長線上截取,連接BG,DF.求證:;求證:四邊形BDFG為菱形;若,,求四邊形BDFG的周長.19.(8分)如圖1,三個正方形ABCD、AEMN、CEFG,其中頂點D、C、G在同一條直線上,點E是BC邊上的動點,連結AC、AM.(1)求證:△ACM∽△ABE.(2)如圖2,連結BD、DM、MF、BF,求證:四邊形BFMD是平行四邊形.(3)若正方形ABCD的面積為36,正方形CEFG的面積為4,求五邊形ABFMN的面積.20.(8分)(2013年四川綿陽12分)如圖,AB是⊙O的直徑,C是半圓O上的一點,AC平分∠DAB,AD⊥CD,垂足為D,AD交⊙O于E,連接CE.(1)判斷CD與⊙O的位置關系,并證明你的結論;(2)若E是的中點,⊙O的半徑為1,求圖中陰影部分的面積.21.(8分)某同學報名參加學校秋季運動會,有以下5個項目可供選擇:徑賽項目:100m、200m、1000m(分別用A1、A2、A3表示);田賽項目:跳遠,跳高(分別用T1、T2表示).(1)該同學從5個項目中任選一個,恰好是田賽項目的概率P為;(2)該同學從5個項目中任選兩個,求恰好是一個徑賽項目和一個田賽項目的概率P1,利用列表法或樹狀圖加以說明;(3)該同學從5個項目中任選兩個,則兩個項目都是徑賽項目的概率P2為.22.(10分)商場某種商品平均每天可銷售30件,每件盈利50元,為了盡快減少庫存,商場決定采取適當的降價措施.經調査發現,每件商品每降價1元,商場平均每天可多售出2件.若某天該商品每件降價3元,當天可獲利多少元?設每件商品降價x元,則商場日銷售量增加____件,每件商品,盈利______元(用含x的代數式表示);在上述銷售正常情況下,每件商品降價多少元時,商場日盈利可達到2000元?23.(12分)為加快城鄉對接,建設美麗鄉村,某地區對A、B兩地間的公路進行改建,如圖,A,B兩地之間有一座山.汽車原來從A地到B地需途經C地沿折線ACB行駛,現開通隧道后,汽車可直接沿直線AB行駛,已知BC=80千米,∠A=45°,∠B=30°.開通隧道前,汽車從A地到B地要走多少千米?開通隧道后,汽車從A地到B地可以少走多少千米?(結果保留根號)24.在如圖所示的正方形網格中,每個小正方形的邊長為1,格點三角形(頂點是網格線的交點的三角形)的頂點、的坐標分別為,.請在如圖所示的網格平面內作出平面直角坐標系;請作出關于軸對稱的;點的坐標為.的面積為.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】
根據菱形的四條邊都相等求出AB,再根據菱形的對角線互相平分可得OB=OD,然后判斷出OE是△ABD的中位線,再根據三角形的中位線平行于第三邊并且等于第三邊的一半求解即可.【詳解】解:∵菱形ABCD的周長為28,∴AB=28÷4=7,OB=OD,∵E為AD邊中點,∴OE是△ABD的中位線,∴OE=AB=×7=3.1.故選:A.【點睛】本題考查了菱形的性質,三角形的中位線平行于第三邊并且等于第三邊的一半,熟記性質與定理是解題的關鍵.2、B【解析】
按照解一元一次不等式的步驟求解即可.【詳解】去括號,得2+2x>1+3x;移項合并同類項,得x<1,所以選B.【點睛】數形結合思想是初中常用的方法之一.3、C【解析】
當函數表達式是二次根式時,被開方數為非負數.據此可得.【詳解】解:根據題意知,
解得:x=0,
故選:C.【點睛】本題主要考查函數自變量的取值范圍,函數自變量的范圍一般從三個方面考慮:(1)當函數表達式是整式時,自變量可取全體實數;(2)當函數表達式是分式時,考慮分式的分母不能為0;(3)當函數表達式是二次根式時,被開方數為非負數.4、C【解析】分析:(1)將點A(0,2)代入求出a的值;分別求出x=9和x=18時的函數值,再分別與2.43、0比較大小可得.詳解:根據題意,將點A(0,2)代入得:36a+2.6=2,解得:∴y與x的關系式為當x=9時,∴球能過球網,當x=18時,∴球會出界.故選C.點睛:考查二次函數的應用題,求范圍的問題,可以利用臨界點法求出自變量的值,根據題意確定范圍.5、B【解析】
根據,可得答案.【詳解】解:∵,∴,∴∴﹣1的值在2和3之間.故選B.【點睛】本題考查了估算無理數的大小,先確定的大小,在確定答案的范圍.6、B【解析】(1)如圖1,當點C在點A和點B之間時,∵點M是AB的中點,點N是BC的中點,AB=8cm,BC=2cm,∴MB=AB=4cm,BN=BC=1cm,∴MN=MB-BN=3cm;(2)如圖2,當點C在點B的右側時,∵點M是AB的中點,點N是BC的中點,AB=8cm,BC=2cm,∴MB=AB=4cm,BN=BC=1cm,∴MN=MB+BN=5cm.綜上所述,線段MN的長度為5cm或3cm.故選B.點睛:解本題時,由于題目中告訴的是點C在直線AB上,因此根據題目中所告訴的AB和BC的大小關系要分點C在線段AB上和點C在線段AB的延長線上兩種情況分析解答,不要忽略了其中任何一種.7、C【解析】
根據線段上的等量關系逐一判斷即可.【詳解】A、∵AD-CD=AC,∴此選項表示正確;B、∵AB+BC=AC,∴此選項表示正確;C、∵AB=CD,∴BD-AB=BD-CD,∴此選項表示不正確;D、∵AB=CD,∴AD-AB=AD-CD=AC,∴此選項表示正確.故答案選:C.【點睛】本題考查了線段上兩點間的距離及線段的和、差的知識,解題的關鍵是找出各線段間的關系.8、B【解析】
連接OB,由切線的性質可得,由鄰補角相等和四邊形的內角和可得,再由圓周角定理求得,然后由平行線的性質即可求得.【詳解】解,連結OB,∵、是的切線,∴,,則,∵四邊形APBO的內角和為360°,即,∴,又∵,,∴,∵,∴,∵,∴,故選:B.【點睛】本題主要考查了切線的性質、圓周角定理、平行線的性質和四邊形的內角和,解題的關鍵是靈活運用有關定理和性質來分析解答.9、C【解析】分析:在實際生活中,許多比較大的數,我們習慣上都用科學記數法表示,使書寫、計算簡便.解答:解:根據題意:2500000=2.5×1.故選C.10、C【解析】
根據一元二次方程的定義結合根的判別式即可得出關于a的一元一次不等式組,解之即可得出結論.【詳解】解:∵關于x的一元二次方程有兩個不相等的實數根,∴,解得:k<1且k≠1.故選:C.【點睛】本題考查了一元二次方程的定義、根的判別式以及解一元一次不等式組,根據一元二次方程的定義結合根的判別式列出關于a的一元一次不等式組是解題的關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、40°【解析】
由∠A=30°,∠APD=70°,利用三角形外角的性質,即可求得∠C的度數,又由在同圓或等圓中,同弧或等弧所對的圓周角相等,即可求得∠B的度數.【詳解】解:∵∠A=30°,∠APD=70°,∴∠C=∠APD﹣∠A=40°,∵∠B與∠C是對的圓周角,∴∠B=∠C=40°.故答案為40°.【點睛】此題考查了圓周角定理與三角形外角的性質.此題難度不大,解題的關鍵是掌握在同圓或等圓中,同弧或等弧所對的圓周角相等定理的應用.12、①②④【解析】
①根據旋轉得到,對應角∠CAD=∠BAF,由∠EAF=∠BAF+∠BAE=∠CAD+∠BAE即可判斷②由旋轉得出AD=AF,∠DAE=∠EAF,及公共邊即可證明③在△ABE∽△ACD中,只有AB=AC、∠ABE=∠ACD=45°兩個條件,無法證明④先由△ACD≌△ABF,得出∠ACD=∠ABF=45°,進而得出∠EBF=90°,然后在Rt△BEF中,運用勾股定理得出BE1+BF1=EF1,等量代換后判定④正確【詳解】由旋轉,可知:∠CAD=∠BAF.∵∠BAC=90°,∠DAE=45°,∴∠CAD+∠BAE=45°,∴∠BAF+∠BAE=∠EAF=45°,結論①正確;②由旋轉,可知:AD=AF在△AED和△AEF中,∴△AED≌△AEF(SAS),結論②正確;③在△ABE∽△ACD中,只有AB=AC,、∠ABE=∠ACD=45°兩個條件,無法證出△ABE∽△ACD,結論③錯誤;④由旋轉,可知:CD=BF,∠ACD=∠ABF=45°,∴∠EBF=∠ABE+∠ABF=90°,∴BF1+BE1=EF1.∵△AED≌△AEF,EF=DE,又∵CD=BF,∴BE1+DC1=DE1,結論④正確.故答案為:①②④【點睛】本題考查了相似三角形的判定,全等三角形的判定與性質,勾股定理,熟練掌握定理是解題的關鍵13、1【解析】
根據一元二次方程的解及根與系數的關系,可得出a2-2a=1、a+b=2,將其代入a2-a+b中即可求出結論.【詳解】∵a、b是方程x2-2x-1=0的兩個根,∴a2-2a=1,a+b=2,∴a2-a+b=a2-2a+(a+b)=1+2=1.故答案為1.【點睛】本題考查根與系數的關系以及一元二次方程的解,牢記兩根之和等于-、兩根之積等于是解題的關鍵.14、【解析】
根據幾何概率的求法:球落在黑色區域的概率就是黑色區域的面積與總面積的比值.【詳解】解:由圖可知黑色區域與白色區域的面積相等,故球落在黑色區域的概率是=.【點睛】本題考查幾何概率的求法:首先根據題意將代數關系用面積表示出來,一般用陰影區域表示所求事件(A);然后計算陰影區域的面積在總面積中占的比例,這個比例即事件(A)發生的概率.15、85【解析】
根據中位數求法,將學生成績從小到大排列,取中間兩數的平均數即可解題.【詳解】解:將六位同學的成績按從小到大進行排列為:75,75,84,86,92,99,中位數為中間兩數84和86的平均數,∴這六位同學成績的中位數是85.【點睛】本題考查了中位數的求法,屬于簡單題,熟悉中位數的概念是解題關鍵.16、(4,2),【解析】
由的橫坐標是1,可得,利用兩個函數解析式求出點、的坐標,得出的長度以及第1個正方形的面積,求出的坐標;然后再求出的坐標,得出第2個正方形的面積,求出的坐標;再求出、的坐標,得出第3個正方形的面積;從而得出規律即可得到第n個正方形的面積.【詳解】解:點、、在直線上,的橫坐標是1,
,
點,,在直線上,
,,
,,
第1個正方形的面積為:;
,
,,,
第2個正方形的面積為:;
,
,,
第3個正方形的面積為:;
,
第n個正方形的面積為:.
故答案為,.【點睛】本題考查了一次函數圖象上點的坐標特征,正方形的性質以及規律型中圖形的變化規律,解題的關鍵是找出規律本題難度適中,解決該題型題目時,根據給定的條件求出第1、2、3個正方形的邊長,根據數據的變化找出變化規律是關鍵.三、解答題(共8題,共72分)17、答案見解析【解析】試題分析:連接BD,由已知可得MN是△BCD的中位線,則MN=BD,根據向量減法表示出BD即可得.試題解析:連接BD,∵點M、N分別是邊DC、BC的中點,∴MN是△BCD的中位線,∴MN∥BD,MN=BD,∵,∴.18、(1)證明見解析(2)證明見解析(3)1【解析】
利用平行線的性質得到,再利用直角三角形斜邊上的中線等于斜邊的一半即可得證,利用平行四邊形的判定定理判定四邊形BDFG為平行四邊形,再利用得結論即可得證,設,則,利用菱形的性質和勾股定理得到CF、AF和AC之間的關系,解出x即可.【詳解】證明:,,,又為AC的中點,,又,,證明:,,四邊形BDFG為平行四邊形,又,四邊形BDFG為菱形,解:設,則,,在中,,解得:,舍去,,菱形BDFG的周長為1.【點睛】本題考查了菱形的判定與性質直角三角形斜邊上的中線,勾股定理等知識,正確掌握這些定義性質及判定并結合圖形作答是解決本題的關鍵.19、(1)證明見解析;(2)證明見解析;(3)74.【解析】
(1)根據四邊形ABCD和四邊形AEMN都是正方形得,∠CAB=∠MAC=45°,∠BAE=∠CAM,可證△ACM∽△ABE;(2)連結AC,由△ACM∽△ABE得∠ACM=∠B=90°,易證∠MCD=∠BDC=45°,得BD∥CM,由MC=BE,FC=CE,得MF=BD,從而可以證明四邊形BFMD是平行四邊形;(3)根據S五邊形ABFMN=S正方形AEMN+S梯形ABFE+S三角形EFM求解即可.【詳解】(1)證明:∵四邊形ABCD和四邊形AEMN都是正方形,∴,∠CAB=∠MAC=45°,∴∠CAB-∠CAE=∠MAC-∠CAE,∴∠BAE=∠CAM,∴△ACM∽△ABE.(2)證明:連結AC因為△ACM∽△ABE,則∠ACM=∠B=90°,因為∠ACB=∠ECF=45°,所以∠ACM+∠ACB+∠ECF=180°,所以點M,C,F在同一直線上,所以∠MCD=∠BDC=45°,所以BD平行MF,又因為MC=BE,FC=CE,所以MF=BC=BD,所以四邊形BFMD是平行四邊形(3)S五邊形ABFMN=S正方形AEMN+S梯形ABFE+S三角形EFM=62+42+(2+6)4+26=74.【點睛】本題主要考查了正方形的性質的應用,解此題的關鍵是能正確作出輔助線,綜合性比較強,有一定的難度.20、解:(1)CD與⊙O相切.理由如下:∵AC為∠DAB的平分線,∴∠DAC=∠BAC.∵OA=OC,∴∠OAC=∠OCA.,∴∠DAC=∠OCA.∴OC∥AD.∵AD⊥CD,∴OC⊥CD.∵OC是⊙O的半徑,∴CD與⊙O相切.(2)如圖,連接EB,由AB為直徑,得到∠AEB=90°,∴EB∥CD,F為EB的中點.∴OF為△ABE的中位線.∴OF=AE=,即CF=DE=.在Rt△OBF中,根據勾股定理得:EF=FB=DC=.∵E是的中點,∴=,∴AE=EC.∴S弓形AE=S弓形EC.∴S陰影=S△DEC=××=.【解析】(1)CD與圓O相切,理由為:由AC為角平分線得到一對角相等,再由OA=OC,利用等邊對等角得到一對角相等,等量代換得到一對內錯角相等,利用內錯角相等兩直線平行得到OC與AD平行,根據AD垂直于CD,得到OC垂直于CD,即可得證.(2)根據E為弧AC的中點,得到弧AE=弧EC,利用等弧對等弦得到AE=EC,可得出弓形AE與弓形EC面積相等,陰影部分面積拼接為直角三角形DEC的面積,求出即可.考點:角平分線定義,等腰三角形的性質,平行的判定和性質,切線的判定,圓周角定理,三角形中位線定理,勾股定理,扇形面積的計算,轉換思想的應用.21、(1);(1);(3);【解析】
(1)直接根據概率公式求解;(1)先畫樹狀圖展示所有10種等可能的結果數,再找出一個徑賽項目和一個田賽項目的結果數,然后根據概率公式計算一個徑賽項目和一個田賽項目的概率P1;(3)找出兩個項目都是徑賽項目的結果數,然后根據概率公式計算兩個項目都是徑賽項目的概率P1.【詳解】解:(1)該同學從5個項目中任選一個,恰好是田賽項目的概率P=;(1)畫樹狀圖為:共有10種等可能的結果數,其中一個徑賽項目和一個田賽項目的結果數為11,所以一個徑賽項目和一個田賽項目的概率P1==;(3)兩個項目都是徑賽項目的結果數為6,所以兩個項目都是徑賽項目的概率P1==.故答案為.考點:列表法與樹狀圖法.22、(1)若某天該商品每件降價3元,當天可獲利1692元;(2)2x;50﹣x.(3)每件商品降價1元時,商場日盈利可達到2000元.【解析】
(1)根據“盈利=單件利潤×銷售數量”即可得出結論;
(2)根據“每件商品每降價1元,商場平均每天可多售出2件”結合每件商品降價x元,即可找出日銷售量增加的件數,再根據原來沒見盈利50元,即可得出降價后的每件盈利額;
(3)根據“盈利=單件利潤×銷售數量”即可列出關于x的一元二次方程,解之即可得出x的值,再根據盡快減少庫存即可確定x的值.【詳解】(1)當天盈利:(50-3)×(30+2×3)=1692(元).
答:若某天該商品每件降價3元,當天可獲利1692元.
(2)∵每件商品每降價1元,商場平均每天可多售出2件,
∴設每件商品降價x元,則商場日銷售量增加2x件,每件商
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年中國工商銀行江西宜春支行春季校招筆試題帶答案
- 2024年中國工商銀行云南迪慶支行春季校招筆試題帶答案
- 2024年中國工商銀行山西長治支行春季校招筆試題帶答案
- 2024年中國工商銀行遼寧營口支行春季校招筆試題帶答案
- 透視虛假合同貸款 曝光非法金融活動背后的真相
- 2025關于建筑工程項目的施工合同
- “誰執法誰普法”普法責任制履職報告范文
- 2025創新技術專利許可合同范本
- 2025汽車買賣合同書參考范文
- 個人與企業租車合同協議書
- 建筑工程安全知識課件
- 鋼材三方采購合同范本
- 貿易安全培訓管理制度
- 全民營養周知識講座課件
- 螺栓緊固標準規范
- 社區時政考試試題及答案
- MOOC 創業基礎-暨南大學 中國大學慕課答案
- 畢業設計10層框架—剪力墻結構體系設計計算書
- 東南大學論文模板v1.1
- 賽英公司FOD監測雷達系統
- 固體制劑車間主要過程控制點
評論
0/150
提交評論