2022年浙江省寧波市董玉娣中學(xué)數(shù)學(xué)九上期末質(zhì)量跟蹤監(jiān)視試題含解析_第1頁
2022年浙江省寧波市董玉娣中學(xué)數(shù)學(xué)九上期末質(zhì)量跟蹤監(jiān)視試題含解析_第2頁
2022年浙江省寧波市董玉娣中學(xué)數(shù)學(xué)九上期末質(zhì)量跟蹤監(jiān)視試題含解析_第3頁
2022年浙江省寧波市董玉娣中學(xué)數(shù)學(xué)九上期末質(zhì)量跟蹤監(jiān)視試題含解析_第4頁
2022年浙江省寧波市董玉娣中學(xué)數(shù)學(xué)九上期末質(zhì)量跟蹤監(jiān)視試題含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.已知,則下列各式不成立的是()A. B. C. D.2.如圖,⊙O是△ABC的外接圓,已知∠ABO=50°,則∠ACB的大小為()A.30° B.40° C.45° D.50°3.已知,則下列比例式成立的是()A. B. C. D.4.相鄰兩根電桿都用鍋索在地面上固定,如圖,一根電桿鋼索系在離地面4米處,另一根電桿鋼索系在離地面6米處,則中間兩根鋼索相交處點P離地面()A.2.4米B.8米C.3米D.必須知道兩根電線桿的距離才能求出點P離地面距離5.關(guān)于反比例函數(shù)y=,下列說法中錯誤的是()A.它的圖象是雙曲線B.它的圖象在第一、三象限C.y的值隨x的值增大而減小D.若點(a,b)在它的圖象上,則點(b,a)也在它的圖象上6.如圖,AG:GD=4:1,BD:DC=2:3,則AE:EC的值是()A.3:2 B.4:3 C.6:5 D.8:57.如圖,PA、PB是⊙O切線,A、B為切點,點C在⊙O上,且∠ACB=55°,則∠APB等于()A.55° B.70° C.110° D.125°8.在皮影戲的表演中,要使銀幕上的投影放大,下列做法中正確的是()A.把投影燈向銀幕的相反方向移動 B.把剪影向投影燈方向移動C.把剪影向銀幕方向移動 D.把銀幕向投影燈方向移動9.判斷一元二次方程是否有實數(shù)解,計算的值是()A. B. C. D.10.拋物線y=x2﹣4x+1與y軸交點的坐標(biāo)是()A.(0,1) B.(1,O) C.(0,﹣3) D.(0,2)二、填空題(每小題3分,共24分)11.如圖,我們把一個半圓與拋物線的一部分圍成的封閉圖形稱為“果圓”.已知點A、B、C、D分別是“果圓”與坐標(biāo)軸的交點,AB為半圓的直徑,拋物線的解析式為y=x2﹣2x﹣3,求這個“果圓”被y軸截得的線段CD的長.12.如圖,中,點、分別是邊、的中點,、分別交對角線于點、,則______.13.如圖,四邊形ABCD內(nèi)接于⊙O,AB是⊙O的直徑,過點C作⊙O的切線交AB的延長線于點P,若∠P=40°,則∠ADC=____°.14.反比例函數(shù)和在第一象限的圖象如圖所示,點A在函數(shù)圖像上,點B在函數(shù)圖像上,AB∥y軸,點C是y軸上的一個動點,則△ABC的面積為_____.15.如圖,在邊長為2的正方形ABCD中,以點D為圓心,AD長為半徑畫,再以BC為直徑畫半圓,若陰影部分①的面積為S1,陰影部分②的面積為S2,則圖中S1﹣S2的值為_____.(結(jié)果保留π)16.一元二次方程x2=x的解為.17.如圖1是一種廣場三聯(lián)漫步機,其側(cè)面示意圖,如圖2所示,其中,.①點到地面的高度是__________.②點到地面的高度是____________.18.底角相等的兩個等腰三角形_________相似.(填“一定”或“不一定”)三、解答題(共66分)19.(10分)為了解某校九年級學(xué)生立定跳遠(yuǎn)水平,隨機抽取該年級50名學(xué)生進行測試,并把測試成績(單位:m)繪制成不完整的頻數(shù)分布表和頻數(shù)分布直方圖.學(xué)生立定跳遠(yuǎn)測試成績的頻數(shù)分布表分組頻數(shù)1.2≤x<1.6a1.6≤x<2.0122.0≤x<2.4b2.4≤x<2.810請根據(jù)圖表中所提供的信息,完成下列問題:(1)表中a=,b=,樣本成績的中位數(shù)落在范圍內(nèi);(2)請把頻數(shù)分布直方圖補充完整;(3)該校九年級共有1000名學(xué)生,估計該年級學(xué)生立定跳遠(yuǎn)成績在2.4≤x<2.8范圍內(nèi)的學(xué)生有多少人?20.(6分)運城菖蒲酒產(chǎn)于山西垣曲.莒蒲灑遠(yuǎn)在漢代就已名噪酒壇,為歷代帝王將相所喜愛,并被列為歷代御膳香醪.菖蒲酒在市場的銷售量會根據(jù)價格的變化而變化.菖蒲酒每瓶的成本價是元,某超市將售價定為元時,每天可以銷售瓶,若售價每降低元,每天即可多銷售瓶(售價不能高于元),若設(shè)每瓶降價元用含的代數(shù)式表示菖蒲酒每天的銷售量.每瓶菖蒲酒的售價定為多少元時每天獲取的利潤最大?最大利潤是多少?21.(6分)某中學(xué)開展“唱紅歌”比賽活動,九年級(1)、(2)班根據(jù)初賽成績,各選出5名選手參加復(fù)賽,兩個班各選出5名選手參加復(fù)賽,兩個班各選出的5名選手的復(fù)賽成績(滿分為100分)如圖所示.(1)根據(jù)圖示填寫下表:班級中位數(shù)(分)眾數(shù)(分)九(1)85九(2)100(2)通過計算得知九(2)班的平均成績?yōu)?5分,請計算九(1)班的平均成績.(3)結(jié)合兩班復(fù)賽成績的平均數(shù)和中位數(shù),分析哪個班級的復(fù)賽成績較好.(4)已知九(1)班復(fù)賽成績的方差是70,請計算九(2)班的復(fù)賽成績的方差,并說明哪個班的成績比較穩(wěn)定?22.(8分)已知關(guān)于x的方程x2-(2k-1)x+k2-2k+3=0有兩個不相等的實數(shù)根.(1)求實數(shù)k的取值范圍.(2)設(shè)方程的兩個實數(shù)根分別為x1,x2,是否存在這樣的實數(shù)k,使得|x1|-|x2|=成立?若存在,求出這樣的k值;若不存在,請說明理由.23.(8分)已知:正方形ABCD,等腰直角三角板的直角頂點落在正方形的頂點D處,使三角板繞點D旋轉(zhuǎn).(1)當(dāng)三角板旋轉(zhuǎn)到圖1的位置時,猜想CE與AF的數(shù)量關(guān)系,并加以證明;(2)在(1)的條件下,若DE:AE:CE=1::3,求∠AED的度數(shù);(3)若BC=4,點M是邊AB的中點,連結(jié)DM,DM與AC交于點O,當(dāng)三角板的邊DF與邊DM重合時(如圖2),若OF=,求DF和DN的長.24.(8分)如圖,破殘的圓形輪片上,弦AB的垂直平分線交弧AB于點C,交弦AB于點D.已知:AB,CD.(1)求作此殘片所在的圓(不寫作法,保留作圖痕跡)(2)求(1)中所作圓的半徑25.(10分)(1)解方程:x2+4x﹣1=0(2)計算:cos30°+sin45°26.(10分)如圖,以矩形ABCD的邊CD為直徑作⊙O,點E是AB的中點,連接CE交⊙O于點F,連接AF并延長交BC于點H.(1)若連接AO,試判斷四邊形AECO的形狀,并說明理由;(2)求證:AH是⊙O的切線;(3)若AB=6,CH=2,則AH的長為.

參考答案一、選擇題(每小題3分,共30分)1、D【分析】利用比例的性質(zhì)進行逐一變形,比較是否與題目一致,即可得出答案.【詳解】A:因為所以ab=cd,故A正確;B:因為所以ab=cd,故B正確;C:因為所以(a+c)b=(d+b)c,化簡得ab=cd,故選項C正確;D:因為所以(a+1)(b+1)=(d+1)(c+1),化簡得ab+a+b=cd+d+c,故選項D錯誤;故答案選擇D.【點睛】本題考查的是比例的性質(zhì),難度不大,需要熟練掌握相關(guān)基礎(chǔ)知識,重點需要熟練掌握去括號法則.2、B【解析】試題解析:在中,故選B.3、C【分析】依據(jù)比例的性質(zhì),將各選項變形即可得到正確結(jié)論.【詳解】解:A.由可得,2y=3x,不合題意;B.由可得,2y=3x,不合題意;C.由可得,3y=2x,符合題意;D.由可得,3x=2y,不合題意;故選:C.【點睛】本題主要考查了比例的性質(zhì),解決問題的關(guān)鍵是掌握:內(nèi)項之積等于外項之積.4、A【分析】如圖,作PE⊥BC于E,由CD//AB可得△APB∽△CPD,可得對應(yīng)高CE與BE之比,根據(jù)CD∥PE可得△BPE∽△BDC,利用對應(yīng)邊成比例可得比例式,把相關(guān)數(shù)值代入求解即可.【詳解】如圖,作PE⊥BC于E,∵CD∥AB,∴△APB∽△CPD,∴,∴,∵CD∥PE,∴△BPE∽△BDC,∴,∴,解得:PE=2.1.故選:A.【點睛】本題考查相似三角形的應(yīng)用,平行于三角形一邊的直線和其它兩邊相交,所構(gòu)成的三角形與原三角形相似;正確作出輔助線構(gòu)建相似三角形并熟練掌握相似三角形的判定定理是解題關(guān)鍵.5、C【分析】根據(jù)反比例函數(shù)y=的圖象上點的坐標(biāo)特征,以及該函數(shù)的圖象的性質(zhì)進行分析、解答.【詳解】A.反比例函數(shù)的圖像是雙曲線,正確;B.k=2>0,圖象位于一、三象限,正確;C.在每一象限內(nèi),y的值隨x的增大而減小,錯誤;D.∵ab=ba,∴若點(a,b)在它的圖像上,則點(b,a)也在它的圖像上,故正確.故選C.【點睛】本題主要考查反比例函數(shù)的性質(zhì).注意:反比例函數(shù)的增減性只指在同一象限內(nèi).6、D【解析】過點D作DF∥CA交BE于F,如圖,利用平行線分線段成比例定理,由DF∥CE得到==,則CE=DF,由DF∥AE得到==,則AE=4DF,然后計算的值.【詳解】如圖,過點D作DF∥CA交BE于F,∵DF∥CE,∴=,而BD:DC=2:3,BC=BD+CD,∴=,則CE=DF,∵DF∥AE,∴=,∵AG:GD=4:1,∴=,則AE=4DF,∴=,故選D.【點睛】本題考查了平行線分線段成比例、平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應(yīng)線段成比例,熟練掌握相關(guān)知識是解題的關(guān)鍵.7、B【分析】根據(jù)圓周角定理構(gòu)造它所對的弧所對的圓心角,即連接OA,OB,求得∠AOB=110°,再根據(jù)切線的性質(zhì)以及四邊形的內(nèi)角和定理即可求解.【詳解】解:連接OA,OB,∵PA,PB是⊙O的切線,∴PA⊥OA,PB⊥OB,∵∠ACB=55°,∴∠AOB=110°,∴∠APB=360°?90°?90°?110°=70°.故選B.【點睛】本題考查了多邊形的內(nèi)角和定理,切線的性質(zhì),圓周角定理的應(yīng)用,關(guān)鍵是求出∠AOB的度數(shù).8、B【分析】根據(jù)中心投影的特點可知:在燈光下,離點光源近的物體它的影子短,離點光源遠(yuǎn)的物體它的影子長,據(jù)此分析判斷即可.【詳解】解:根據(jù)中心投影的特點可知,如圖,當(dāng)投影燈接近銀幕時,投影會越來越大;相反當(dāng)投影燈遠(yuǎn)離銀幕時,投影會越來越小,故A錯誤;當(dāng)剪影越接近銀幕時,投影會越來越小;相反當(dāng)剪影遠(yuǎn)離銀幕時,投影會越來越大,故B正確,C錯誤;當(dāng)銀幕接近投影燈時,投影會越來越小;當(dāng)銀幕遠(yuǎn)離投影燈時,投影會越來越大,故D錯誤.

故選:B.【點睛】此題主要考查了中心投影的特點,熟練掌握中心投影的原理和特點是解題的關(guān)鍵.9、B【解析】首先將一元二次方程化為一般式,然后直接計算判別式即可.【詳解】一元二次方程可化為:∴故答案為B.【點睛】此題主要考查一元二次方程的根的判別式的求解,熟練掌握,即可解題.10、A【分析】拋物線與y軸相交時,橫坐標(biāo)為0,將橫坐標(biāo)代入拋物線解析式可求交點縱坐標(biāo).【詳解】解:當(dāng)x=0時,y=x2-4x+1=1,

∴拋物線與y軸的交點坐標(biāo)為(0,1),

故選A.【點睛】本題考查了拋物線與坐標(biāo)軸交點坐標(biāo)的求法.令x=0,可到拋物線與y軸交點的縱坐標(biāo),令y=0,可得到拋物線與x軸交點的橫坐標(biāo).二、填空題(每小題3分,共24分)11、這個“果圓”被y軸截得的線段CD的長3+.【分析】連接AC,BC,有拋物線的解析式可求出A,B,C的坐標(biāo),進而求出AO,BO,DO的長,在直角三角形ACB中,利用射影定理可求出CO的長,進而可求出CD的長.【詳解】連接AC,BC,∵拋物線的解析式為y=(x-1)2-4,∴點D的坐標(biāo)為(0,?3),∴OD的長為3,設(shè)y=0,則0=(x-1)2-4,解得:x=?1或3,∴A(?1,0),B(3,0)∴AO=1,BO=3,∵AB為半圓的直徑,∴∠ACB=90°,∵CO⊥AB,∴CO2=AO?BO=3,∴CO=,∴CD=CO+OD=3+,故答案為3+.12、【分析】由四邊形ABCD是平行四邊形可得AD∥BC,AD=BC,△DEH∽△BCH,進而得,連接AC,交BD于點M,如圖,根據(jù)三角形的中位線定理可得EF∥AC,可推得,△EGH∽△CMH,于是得DG=MG,,設(shè)HG=a,依次用a的代數(shù)式表示出MH、DG、BH,進而可得答案.【詳解】解:∵四邊形ABCD是平行四邊形,∴AD∥BC,AD=BC,∴△DEH∽△BCH,∵E是AD中點,AD=BC,∴,連接AC,交BD于點M,如圖,∵點、分別是邊、的中點,∴EF∥AC,∴,△EGH∽△CMH,∴DG=MG,,設(shè)HG=a,則MH=2a,MG=3a,∴DG=3a,∴DM=6a,∵四邊形ABCD是平行四邊形,∴BM=DM=6a,BH=8a,∴.故答案為:.【點睛】本題考查了平行四邊形的性質(zhì)、平行線分線段成比例定理、相似三角形的判定和性質(zhì)、三角形的中位線定理等知識,連接AC,充分利用平行四邊形的性質(zhì)、構(gòu)建三角形的中位線和相似三角形的模型是解題的關(guān)鍵.13、115°【分析】根據(jù)過C點的切線與AB的延長線交于P點,∠P=40°,可以求得∠OCP和∠OBC的度數(shù),又根據(jù)圓內(nèi)接四邊形對角互補,可以求得∠D的度數(shù),本題得以解決.【詳解】解:連接OC,如右圖所示,

由題意可得,∠OCP=90°,∠P=40°,

∴∠COB=50°,

∵OC=OB,

∴∠OCB=∠OBC=65°,

∵四邊形ABCD是圓內(nèi)接四邊形,

∴∠D+∠ABC=180°,

∴∠D=115°,

故答案為:115°.【點睛】本題考查切線的性質(zhì)、圓內(nèi)接四邊形,解題的關(guān)鍵是明確題意,找出所求問題需要的條件.14、1【分析】設(shè)A(m,),B(m,),則AB=-,△ABC的高為m,根據(jù)三角形面積公式計算即可得答案.【詳解】∵A、B分別為、圖象上的點,AB∥y軸,∴設(shè)A(m,),B(m,),∴S△ABC=(-)m=1.故答案為:1【點睛】本題考查反比例函數(shù)圖象上點的坐標(biāo)特征,熟知反比例函數(shù)圖象上點的坐標(biāo)都滿足反比例函數(shù)的解析式是解題關(guān)鍵.15、π【分析】如圖,設(shè)圖中③的面積為S1.構(gòu)建方程組即可解決問題.【詳解】解:如圖,設(shè)圖中③的面積為S1.由題意:,可得S1﹣S2=π,故答案為π.【點睛】本題考查扇形的面積、正方形的性質(zhì)等知識,解題的關(guān)鍵是學(xué)會利用參數(shù)構(gòu)建方程組解決問題.16、x1=0,x2=1.【解析】試題分析:首先把x移項,再把方程的左面分解因式,即可得到答案.解:x2=x,移項得:x2﹣x=0,∴x(x﹣1)=0,x=0或x﹣1=0,∴x1=0,x2=1.故答案為x1=0,x2=1.考點:解一元二次方程-因式分解法.17、【分析】①過點A作,垂足為F,得出,BF=40,利用勾股定理可得出AF的長,即A到地面的高度②過點D作,垂足為H,可得出,,可求出AH的長度,從而得出D到底面的高度為AH+AF.【詳解】解:過點A作,垂足為F,過點D作,垂足為H,如下圖:①∵,∴,BF=40cm∴∴A到地面的高度為:.②∵∴,∴,∴∴AH=10,∴D到底面的高度為AH+AF=(10+)cm.【點睛】本題考查的知識點是等腰三角形的性質(zhì)以及相似三角形的判定與性質(zhì),解題的關(guān)鍵是弄清題意,結(jié)合題目作出輔助線,再利用相似三角形性質(zhì)求解.18、一定【分析】根據(jù)等腰三角形的性質(zhì)得到∠B=∠C,∠E=∠F,根據(jù)相似三角形的判定定理證明.【詳解】如圖:∵AB=AC,DE=EF,∴∠B=∠C,∠E=∠F,∵∠B=∠E,∴∠B=∠C=∠E=∠F,∴△ABC∽△DEF,故答案為一定.【點睛】本題考查的是相似三角形的判定、等腰三角形的性質(zhì),掌握兩組角對應(yīng)相等的兩個三角形相似是解題的關(guān)鍵.三、解答題(共66分)19、(1)8,20,2.0≤x<2.4;(2)補圖見解析;(3)該年級學(xué)生立定跳遠(yuǎn)成績在2.4≤x<2.8范圍內(nèi)的學(xué)生有200人.【解析】(1)根據(jù)題意和統(tǒng)計圖可以求得a、b的值,并得到樣本成績的中位數(shù)所在的取值范圍;(2)根據(jù)b的值可以將頻數(shù)分布直方圖補充完整;(3)用1000乘以樣本中該年級學(xué)生立定跳遠(yuǎn)成績在2.4≤x<2.8范圍內(nèi)的學(xué)生比例即可得.【詳解】(1)由統(tǒng)計圖可得,a=8,b=50﹣8﹣12﹣10=20,樣本成績的中位數(shù)落在:2.0≤x<2.4范圍內(nèi),故答案為:8,20,2.0≤x<2.4;(2)由(1)知,b=20,補全的頻數(shù)分布直方圖如圖所示;(3)1000×=200(人),答:該年級學(xué)生立定跳遠(yuǎn)成績在2.4≤x<2.8范圍內(nèi)的學(xué)生有200人.【點睛】本題考查了頻數(shù)分布表、頻數(shù)分布直方圖、中位數(shù)等,讀懂統(tǒng)計圖與統(tǒng)計表,從中找到必要的信息是解題的關(guān)鍵.20、(1);(2)售價定為元時,有最大利潤,最大利潤為元.【分析】⑴依據(jù)題意列出式子即可;⑵依據(jù)題意可以得到y(tǒng)=-5(x-4)2+1280解出x=4時,利潤最大,算出售價及最大利潤即可.【詳解】解:莒蒲酒每天的銷售量為.設(shè)每天銷售菖蒲酒獲得的利潤為元由題意,得.當(dāng)時,利潤有最大值,即售價定為元時,有最大利潤,最大利潤為元.【點睛】此題主要考查了一元二次方程實際生活中的應(yīng)用,找準(zhǔn)等量關(guān)系列出一元二次方程是解題的關(guān)鍵.21、(1)見解析;(2)85分;(3)九(1)班成績好;(4)九(1)班成績穩(wěn)定.【解析】(1)觀察圖分別寫出九(1)班和九(2)班5名選手的復(fù)賽成績,然后根據(jù)中位數(shù)的定義和平均數(shù)的求法以及眾數(shù)的定義求解即可;

(2)根據(jù)平均數(shù)計算即可;

(3)在平均數(shù)相同的情況下,中位數(shù)高的成績較好;

(4)先根據(jù)方差公式分別計算兩個班復(fù)賽成績的方差,再根據(jù)方差的意義判斷即可.【詳解】解:(1)填表:班級中位數(shù)(分)眾數(shù)(分)九(1)8585九(2)80100(2)=85答:九(1)班的平均成績?yōu)?5分(3)九(1)班成績好些因為兩個班級的平均數(shù)都相同,九(1)班的中位數(shù)高,所以在平均數(shù)相同的情況下中位數(shù)高的九(1)班成績好.(4)S21班=[(75﹣85)2+(80﹣85)2+(85﹣85)2+(85﹣85)2+(100﹣85)2]=70,S22班=[(70﹣85)2+(100﹣85)2+(100﹣85)2+(75﹣85)2+(80﹣85)2]=160,因為160>70所以九(1)班成績穩(wěn)定.【點睛】考查了平均數(shù)、中位數(shù)、眾數(shù)和方差的意義即運用.方差是用來衡量一組數(shù)據(jù)波動大小的量,方差越大,表明這組數(shù)據(jù)偏離平均數(shù)越大,即波動越大,數(shù)據(jù)越不穩(wěn)定;反之,方差越小,表明這組數(shù)據(jù)分布比較集中,各數(shù)據(jù)偏離平均數(shù)越小,即波動越小,數(shù)據(jù)越穩(wěn)定.22、(1)k>;(2)1.【分析】(1)由方程有兩個不相等的實數(shù)根知△>2,列出關(guān)于k的不等式求解可得;(2)由韋達(dá)定理知x1+x2=2k﹣1,x1x2=k2﹣2k+2=(k﹣1)2+1>2,可以判斷出x1>2,x2>2.將原式兩邊平方后把x1+x2、x1x2代入得到關(guān)于k的方程,求解可得.【詳解】解:(1)由題意知△>2,∴[﹣(2k﹣1)]2﹣1×1×(k2﹣2k+2)>2,整理得:1k﹣7>2,解得:k;(2)由題意知x1+x2=2k﹣1,x1x2=k2﹣2k+2=(k+1)2+1>2,∴x1,x2同號.∵x1+x2=2k﹣1>=,∴x1>2,x2>2.∵|x1|﹣|x2|,∴x1﹣x2,∴x12﹣2x1x2+x22=5,即(x1+x2)2﹣1x1x2=5,代入得:(2k﹣1)2﹣1(k2﹣2k+2)=5,整理,得:1k﹣12=2,解得:k=3.【點睛】本題考查了根與系數(shù)的關(guān)系及根的判別式,熟練掌握判別式的值與方程的根之間的關(guān)系及韋達(dá)定理是解題的關(guān)鍵.23、(1)CE=AF,見解析;(2)∠AED=135°;(3),.【解析】(1)由正方形和等腰直角三角形的性質(zhì)判斷出△ADF≌△CDE即可;

(2)設(shè)DE=k,表示出AE,CE,EF,判斷出△AEF為直角三角形,即可求出∠AED;

(3)由AB∥CD,得出,求出DM,DO,再判斷出△DFN∽△DCO,得到,求出DN、DF即可.【詳解】解:(1)CE=AF,在正方形ABCD和等腰直角三角形CEF中,F(xiàn)D=DE,CD=AD,∠ADC=∠EDF=90°,∴∠ADF=∠CDE,∴△ADF≌△CDE(SAS),∴CE=AF;(2)設(shè)DE=k,∵DE:AE:CE=1::3∴AE=k,CE=AF=3k,∴EF=k,∵AE2+EF2=7k2+2k2=9k2,AF2=9k2,即AE2+EF2=AF2∴△AEF為直角三角形,∴∠AEF=90°∴∠AED=∠AEF+DEF=90°+45°=135°;(3)∵M是AB的中點,∴MA=AB=AD,∵AB∥CD,∴△MAO∽△DCO,∴,在Rt△DAM中,AD=4,AM=2,∴DM=2,∴DO=,∵OF=,∴DF=,∵∠DFN=∠DCO=45°,∠FDN=∠CDO,∴△DFN∽△DCO,∴,即,∴DN=.【點睛】此題是幾何變換綜合題,主要考查了正方形,等腰直角三角形的性質(zhì),全等三角形的性質(zhì)和判定,相似三角形的性質(zhì)和判定,勾股定理及其勾股定理的逆定理,判斷△AEF為直角三角形是解本題的關(guān)鍵,也是難點.24、(1)圖見解析;(2)1.【分析】(1)由垂徑定理知,垂直于弦的直徑是弦的中垂線,故作AC,BC的中垂線交于點O,則點O是弧ACB所在圓的圓心;(2)在Rt△OAD中,由勾股定理可求得半徑OA的長.【詳解】解:(1)作弦AC的垂直平分線與弦AB的垂直平分線交于O點,以O(shè)為圓心

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論