




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
湖北省潛江市張金鎮(zhèn)鐵匠溝初級中學2023-2024學年中考數學模試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.下列安全標志圖中,是中心對稱圖形的是()A. B. C. D.2.在Rt△ABC中,∠ACB=90°,AC=12,BC=9,D是AB的中點,G是△ABC的重心,如果以點D為圓心DG為半徑的圓和以點C為圓心半徑為r的圓相交,那么r的取值范圍是()A.r<5 B.r>5 C.r<10 D.5<r<103.如圖所示的圖形,是下面哪個正方體的展開圖()A. B. C. D.4.二次函數y=a(x-4)2-4(a≠0)的圖象在2<x<3這一段位于x軸的下方,在6<x<7這一段位于x軸的上方,則a的值為(
)A.1
B.-1
C.2
D.-25.一球鞋廠,現打折促銷賣出330雙球鞋,比上個月多賣10%,設上個月賣出x雙,列出方程()A.10%x=330 B.(1﹣10%)x=330C.(1﹣10%)2x=330 D.(1+10%)x=3306.有理數a、b在數軸上的位置如圖所示,則下列結論中正確的是()A.a+b>0 B.ab>0 C.a﹣b<o D.a÷b>07.已知在一個不透明的口袋中有4個形狀、大小、材質完全相同的球,其中1個紅色球,3個黃色球.從口袋中隨機取出一個球(不放回),接著再取出一個球,則取出的兩個都是黃色球的概率為()A.34 B.23 C.98.下列運算正確的是()A.(a2)3=a5 B. C.(3ab)2=6a2b2 D.a6÷a3=a29.如果,那么的值為()A.1 B.2 C. D.10.已知圓心在原點O,半徑為5的⊙O,則點P(-3,4)與⊙O的位置關系是()A.在⊙O內B.在⊙O上C.在⊙O外D.不能確定11.如圖,將△ABC繞點C旋轉60°得到△A′B′C′,已知AC=6,BC=4,則線段AB掃過的圖形面積為()A. B. C.6π D.以上答案都不對12.已知△ABC,D是AC上一點,尺規(guī)在AB上確定一點E,使△ADE∽△ABC,則符合要求的作圖痕跡是()A. B.C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如果點P1(2,y1)、P2(3,y2)在拋物線上,那么y1______y2.(填“>”,“<”或“=”).14.若圓錐的地面半徑為,側面積為,則圓錐的母線是__________.15.計算﹣的結果為_____.16.π﹣3的絕對值是_____.17.若am=5,an=6,則am+n=________.18.當2≤x≤5時,二次函數y=﹣(x﹣1)2+2的最大值為_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)我們給出如下定義:順次連接任意一個四邊形各邊中點所得的四邊形叫中點四邊形.如圖1,四邊形ABCD中,點E,F,G,H分別為邊AB,BC,CD,DA的中點.求證:中點四邊形EFGH是平行四邊形;如圖2,點P是四邊形ABCD內一點,且滿足PA=PB,PC=PD,∠APB=∠CPD,點E,F,G,H分別為邊AB,BC,CD,DA的中點,猜想中點四邊形EFGH的形狀,并證明你的猜想;若改變(2)中的條件,使∠APB=∠CPD=90°,其他條件不變,直接寫出中點四邊形EFGH的形狀.(不必證明)20.(6分)計算:(-1)-1-++|1-3|21.(6分)在△ABC中,AB=AC≠BC,點D和點A在直線BC的同側,BD=BC,∠BAC=α,∠DBC=β,且α+β=110°,連接AD,求∠ADB的度數.(不必解答)小聰先從特殊問題開始研究,當α=90°,β=30°時,利用軸對稱知識,以AB為對稱軸構造△ABD的軸對稱圖形△ABD′,連接CD′(如圖1),然后利用α=90°,β=30°以及等邊三角形等相關知識便可解決這個問題.請結合小聰研究問題的過程和思路,在這種特殊情況下填空:△D′BC的形狀是三角形;∠ADB的度數為.在原問題中,當∠DBC<∠ABC(如圖1)時,請計算∠ADB的度數;在原問題中,過點A作直線AE⊥BD,交直線BD于E,其他條件不變若BC=7,AD=1.請直接寫出線段BE的長為.22.(8分)一次函數的圖象經過點和點,求一次函數的解析式.23.(8分)在大課間活動中,體育老師隨機抽取了七年級甲、乙兩班部分女學生進行仰臥起坐的測試,并對成績進行統(tǒng)計分析,繪制了頻數分布表和統(tǒng)計圖,請你根據圖表中的信息完成下列問題:分組頻數頻率第一組(0≤x<15)30.15第二組(15≤x<30)6a第三組(30≤x<45)70.35第四組(45≤x<60)b0.20(1)頻數分布表中a=_____,b=_____,并將統(tǒng)計圖補充完整;如果該校七年級共有女生180人,估計仰臥起坐能夠一分鐘完成30或30次以上的女學生有多少人?已知第一組中只有一個甲班學生,第四組中只有一個乙班學生,老師隨機從這兩個組中各選一名學生談心得體會,則所選兩人正好都是甲班學生的概率是多少?24.(10分)如圖,一次函數y=k1x+b(k1≠0)與反比例函數的圖象交于點A(-1,2),B(m,-1).(1)求一次函數與反比例函數的解析式;(2)在x軸上是否存在點P(n,0),使△ABP為等腰三角形,請你直接寫出P點的坐標.25.(10分)計算:(﹣2)0+()﹣1+4cos30°﹣|4﹣|26.(12分)已知:a是﹣2的相反數,b是﹣2的倒數,則(1)a=_____,b=_____;(2)求代數式a2b+ab的值.27.(12分)我們已經知道一些特殊的勾股數,如三連續(xù)正整數中的勾股數:3、4、5;三個連續(xù)的偶數中的勾股數6、8、10;事實上,勾股數的正整數倍仍然是勾股數.另外利用一些構成勾股數的公式也可以寫出許多勾股數,畢達哥拉斯學派提出的公式:a=2n+1,b=2n2+2n,c=2n2+2n+1(n為正整數)是一組勾股數,請證明滿足以上公式的a、b、c的數是一組勾股數.然而,世界上第一次給出的勾股數公式,收集在我國古代的著名數學著作《九章算術》中,書中提到:當a=(m2﹣n2),b=mn,c=(m2+n2)(m、n為正整數,m>n時,a、b、c構成一組勾股數;利用上述結論,解決如下問題:已知某直角三角形的邊長滿足上述勾股數,其中一邊長為37,且n=5,求該直角三角形另兩邊的長.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】試題分析:A.不是中心對稱圖形,故此選項不合題意;B.是中心對稱圖形,故此選項符合題意;C.不是中心對稱圖形,故此選項不符合題意;D.不是中心對稱圖形,故此選項不合題意;故選B.考點:中心對稱圖形.2、D【解析】延長CD交⊙D于點E,∵∠ACB=90°,AC=12,BC=9,∴AB==15,∵D是AB中點,∴CD=,∵G是△ABC的重心,∴CG==5,DG=2.5,∴CE=CD+DE=CD+DF=10,∵⊙C與⊙D相交,⊙C的半徑為r,∴,故選D.【點睛】本題考查了三角形的重心的性質、直角三角形斜邊中線等于斜邊一半、兩圓相交等,根據知求出CG的長是解題的關鍵.3、D【解析】
根據展開圖中四個面上的圖案結合各選項能夠看見的面上的圖案進行分析判斷即可.【詳解】A.因為A選項中的幾何體展開后,陰影正方形的頂點不在陰影三角形的邊上,與展開圖不一致,故不可能是A:B.因為B選項中的幾何體展開后,陰影正方形的頂點不在陰影三角形的邊上,與展開圖不一致,故不可能是B;C.因為C選項中的幾何體能夠看見的三個面上都沒有陰影圖家,而展開圖中有四個面上有陰影圖室,所以不可能是C.D.因為D選項中的幾何體展開后有可能得到如圖所示的展開圖,所以可能是D;故選D.【點睛】本題考查了學生的空間想象能力,解決本題的關鍵突破口是掌握正方體的展開圖特征.4、A【解析】試題分析:根據角拋物線頂點式得到對稱軸為直線x=4,利用拋物線對稱性得到拋物線在1<x<2這段位于x軸的上方,而拋物線在2<x<3這段位于x軸的下方,于是可得拋物線過點(2,0)然后把(2,0)代入y=a(x-4)2-4(a≠0)可求出a=1.故選A5、D【解析】解:設上個月賣出x雙,根據題意得:(1+10%)x=1.故選D.6、C【解析】
利用數軸先判斷出a、b的正負情況以及它們絕對值的大小,然后再進行比較即可.【詳解】解:由a、b在數軸上的位置可知:a<1,b>1,且|a|>|b|,∴a+b<1,ab<1,a﹣b<1,a÷b<1.故選:C.7、D【解析】試題分析:列舉出所有情況,看取出的兩個都是黃色球的情況數占總情況數的多少即可.試題解析:畫樹狀圖如下:共有12種情況,取出2個都是黃色的情況數有6種,所以概率為12故選D.考點:列表法與樹狀法.8、B【解析】分析:本題考察冪的乘方,同底數冪的乘法,積的乘方和同底數冪的除法.解析:,故A選項錯誤;a3·a=a4故B選項正確;(3ab)2=9a2b2故C選項錯誤;a6÷a3=a3故D選項錯誤.故選B.9、D【解析】
先對原分式進行化簡,再尋找化簡結果與已知之間的關系即可得出答案.【詳解】故選:D.【點睛】本題主要考查分式的化簡求值,掌握分式的基本性質是解題的關鍵.10、B.【解析】試題解析:∵OP=5,∴根據點到圓心的距離等于半徑,則知點在圓上.故選B.考點:1.點與圓的位置關系;2.坐標與圖形性質.11、D【解析】
從圖中可以看出,線段AB掃過的圖形面積為一個環(huán)形,環(huán)形中的大圓半徑是AC,小圓半徑是BC,圓心角是60度,所以陰影面積=大扇形面積-小扇形面積.【詳解】陰影面積=π.
故選D.【點睛】本題的關鍵是理解出,線段AB掃過的圖形面積為一個環(huán)形.12、A【解析】
以DA為邊、點D為頂點在△ABC內部作一個角等于∠B,角的另一邊與AB的交點即為所求作的點.【詳解】如圖,點E即為所求作的點.故選:A.【點睛】本題主要考查作圖-相似變換,根據相似三角形的判定明確過點D作一角等于∠B或∠C,并熟練掌握做一個角等于已知角的作法式解題的關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、>【解析】分析:首先求得拋物線y=﹣x2+2x的對稱軸是x=1,利用二次函數的性質,點M、N在對稱軸的右側,y隨著x的增大而減小,得出答案即可.詳解:拋物線y=﹣x2+2x的對稱軸是x=﹣=1.∵a=﹣1<0,拋物線開口向下,1<2<3,∴y1>y2.故答案為>.點睛:本題考查了二次函數圖象上點的坐標特征,二次函數的性質,求得對稱軸,掌握二次函數圖象的性質解決問題.14、13【解析】試題解析:圓錐的側面積=×底面半徑×母線長,把相應數值代入即可求解.設母線長為R,則:解得:故答案為13.15、.【解析】
根據同分母分式加減運算法則化簡即可.【詳解】原式=,故答案為.【點睛】本題考查了分式的加減運算,熟記運算法則是解題的關鍵.16、π﹣1.【解析】
根據絕對值的性質即可解答.【詳解】π﹣1的絕對值是π﹣1.故答案為π﹣1.【點睛】本題考查了絕對值的性質,熟練運用絕對值的性質是解決問題的關鍵.17、1.【解析】
根據同底數冪乘法性質am·an=am+n,即可解題.【詳解】解:am+n=am·an=5×6=1.【點睛】本題考查了同底數冪乘法計算,屬于簡單題,熟悉法則是解題關鍵.18、1.【解析】
先根據二次函數的圖象和性質判斷出2≤x≤5時的增減性,然后再找最大值即可.【詳解】對稱軸為∵a=﹣1<0,∴當x>1時,y隨x的增大而減小,∴當x=2時,二次函數y=﹣(x﹣1)2+2的最大值為1,故答案為:1.【點睛】本題主要考查二次函數在一定范圍內的最大值,掌握二次函數的圖象和性質是解題的關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)證明見解析;(2)四邊形EFGH是菱形,證明見解析;(3)四邊形EFGH是正方形.【解析】
(1)如圖1中,連接BD,根據三角形中位線定理只要證明EH∥FG,EH=FG即可.(2)四邊形EFGH是菱形.先證明△APC≌△BPD,得到AC=BD,再證明EF=FG即可.(3)四邊形EFGH是正方形,只要證明∠EHG=90°,利用△APC≌△BPD,得∠ACP=∠BDP,即可證明∠COD=∠CPD=90°,再根據平行線的性質即可證明.【詳解】(1)證明:如圖1中,連接BD.∵點E,H分別為邊AB,DA的中點,∴EH∥BD,EH=BD,∵點F,G分別為邊BC,CD的中點,∴FG∥BD,FG=BD,∴EH∥FG,EH=GF,∴中點四邊形EFGH是平行四邊形.(2)四邊形EFGH是菱形.證明:如圖2中,連接AC,BD.∵∠APB=∠CPD,∴∠APB+∠APD=∠CPD+∠APD,即∠APC=∠BPD,在△APC和△BPD中,∵AP=PB,∠APC=∠BPD,PC=PD,∴△APC≌△BPD,∴AC=BD.∵點E,F,G分別為邊AB,BC,CD的中點,∴EF=AC,FG=BD,∵四邊形EFGH是平行四邊形,∴四邊形EFGH是菱形.(3)四邊形EFGH是正方形.證明:如圖2中,設AC與BD交于點O.AC與PD交于點M,AC與EH交于點N.∵△APC≌△BPD,∴∠ACP=∠BDP,∵∠DMO=∠CMP,∴∠COD=∠CPD=90°,∵EH∥BD,AC∥HG,∴∠EHG=∠ENO=∠BOC=∠DOC=90°,∵四邊形EFGH是菱形,∴四邊形EFGH是正方形.考點:平行四邊形的判定與性質;中點四邊形.20、-1【解析】試題分析:根據運算順序先分別進行負指數冪的計算、二次根式的化簡、0次冪的運算、絕對值的化簡,然后再進行加減法運算即可.試題解析:原式=-1-=-1.21、(1)①△D′BC是等邊三角形,②∠ADB=30°(1)∠ADB=30°;(3)7+或7﹣【解析】
(1)①如圖1中,作∠ABD′=∠ABD,BD′=BD,連接CD′,AD′,由△ABD≌△ABD′,推出△D′BC是等邊三角形;②借助①的結論,再判斷出△AD′B≌△AD′C,得∠AD′B=∠AD′C,由此即可解決問題.(1)當60°<α≤110°時,如圖3中,作∠AB
D′=∠ABD,B
D′=BD,連接CD′,AD′,證明方法類似(1).(3)第①種情況:當60°<α≤110°時,如圖3中,作∠AB
D′=∠ABD,B
D′=BD,連接CD′,AD′,證明方法類似(1),最后利用含30度角的直角三角形求出DE,即可得出結論;第②種情況:當0°<α<60°時,如圖4中,作∠ABD′=∠ABD,BD′=BD,連接CD′,AD′.證明方法類似(1),最后利用含30度角的直角三角形的性質即可得出結論.【詳解】(1)①如圖1中,作∠ABD′=∠ABD,BD′=BD,連接CD′,AD′,∵AB=AC,∠BAC=90°,∴∠ABC=45°,∵∠DBC=30°,∴∠ABD=∠ABC﹣∠DBC=15°,在△ABD和△ABD′中,∴△ABD≌△ABD′,∴∠ABD=∠ABD′=15°,∠ADB=∠AD′B,∴∠D′BC=∠ABD′+∠ABC=60°,∵BD=BD′,BD=BC,∴BD′=BC,∴△D′BC是等邊三角形,②∵△D′BC是等邊三角形,∴D′B=D′C,∠BD′C=60°,在△AD′B和△AD′C中,∴△AD′B≌△AD′C,∴∠AD′B=∠AD′C,∴∠AD′B=∠BD′C=30°,∴∠ADB=30°.(1)∵∠DBC<∠ABC,∴60°<α≤110°,如圖3中,作∠ABD′=∠ABD,BD′=BD,連接CD′,AD′,∵AB=AC,∴∠ABC=∠ACB,∵∠BAC=α,∴∠ABC=(180°﹣α)=90°﹣α,∴∠ABD=∠ABC﹣∠DBC=90°﹣α﹣β,同(1)①可證△ABD≌△ABD′,∴∠ABD=∠ABD′=90°﹣α﹣β,BD=BD′,∠ADB=∠AD′B∴∠D′BC=∠ABD′+∠ABC=90°﹣α﹣β+90°﹣α=180°﹣(α+β),∵α+β=110°,∴∠D′BC=60°,由(1)②可知,△AD′B≌△AD′C,∴∠AD′B=∠AD′C,∴∠AD′B=∠BD′C=30°,∴∠ADB=30°.(3)第①情況:當60°<α<110°時,如圖3﹣1,由(1)知,∠ADB=30°,作AE⊥BD,在Rt△ADE中,∠ADB=30°,AD=1,∴DE=,∵△BCD'是等邊三角形,∴BD'=BC=7,∴BD=BD'=7,∴BE=BD﹣DE=7﹣;第②情況:當0°<α<60°時,如圖4中,作∠ABD′=∠ABD,BD′=BD,連接CD′,AD′.同理可得:∠ABC=(180°﹣α)=90°﹣α,∴∠ABD=∠DBC﹣∠ABC=β﹣(90°﹣α),同(1)①可證△ABD≌△ABD′,∴∠ABD=∠ABD′=β﹣(90°﹣α),BD=BD′,∠ADB=∠AD′B,∴∠D′BC=∠ABC﹣∠ABD′=90°﹣α﹣[β﹣(90°﹣α)]=180°﹣(α+β),∴D′B=D′C,∠BD′C=60°.同(1)②可證△AD′B≌△AD′C,∴∠AD′B=∠AD′C,∵∠AD′B+∠AD′C+∠BD′C=360°,∴∠ADB=∠AD′B=150°,在Rt△ADE中,∠ADE=30°,AD=1,∴DE=,∴BE=BD+DE=7+,故答案為:7+或7﹣.【點睛】此題是三角形綜合題,主要考查全等三角形的判定和性質.等邊三角形的性質、等腰三角形的性質等知識,解題的關鍵是學會添加常用輔助線,構造全等三角形解決問題,屬于中考常考題型.22、y=2x+1.【解析】
直接把點A(﹣1,1),B(1,5)代入一次函數y=kx+b(k≠0),求出k、b的值即可.【詳解】∵一次函數y=kx+b(k≠0)的圖象經過點A(﹣1,1)和點B(1,5),∴,解得:.故一次函數的解析式為y=2x+1.【點睛】本題考查了待定系數法求一次函數的解析式,熟知待定系數法求一次函數解析式一般步驟是解答此題的關鍵.23、0.34【解析】
(1)由統(tǒng)計圖易得a與b的值,繼而將統(tǒng)計圖補充完整;(2)利用用樣本估計總體的知識求解即可求得答案;(3)首先根據題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果與所選兩人正好都是甲班學生的情況,再利用概率公式即可求得答案.【詳解】(1)a=1﹣0.15﹣0.35﹣0.20=0.3;∵總人數為:3÷0.15=20(人),∴b=20×0.20=4(人);故答案為0.3,4;補全統(tǒng)計圖得:(2)估計仰臥起坐能夠一分鐘完成30或30次以上的女學生有:180×(0.35+0.20)=99(人);(3)畫樹狀圖得:∵共有12種等可能的結果,所選兩人正好都是甲班學生的有3種情況,∴所選兩人正好都是甲班學生的概率是:=.【點睛】本題考查了列表法或樹狀圖法求概率以及條形統(tǒng)計圖的知識.用到的知識點為:概率=所求情況數與總情況數之比.24、(1)反比例函數的解析式為;一次函數的解析式為y=-x+1;(2)滿足條件的P點的坐標為(-1+,0)或(-1-,0)或(2+,0)或(2-,0)或(0,0).【解析】
(1)將A點代入求出k2,從而求出反比例函數方程,再聯立將B點代入即可求出一次函數方程.(2)令PA=PB,求出P.令AP=AB,求P.令BP=BA,求P.根據坐標距離公式計算即可.【詳解】(1)把A(-1,2)代入,得到k2=-2,∴反比例函數的解析式為.∵B(m,-1)在上,∴m=2,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 老人中考語文作文
- 玻璃熔化工藝模擬與優(yōu)化考核試卷
- 什么中的身影初一語文作文
- 難忘的友誼初一語文作文
- 綠色初二語文作文
- 河南省洛陽市新安縣2023-2024學年七年級下學期期末考試數學試卷(含答案)
- 磷肥生產設備結構與原理考核卷考核試卷
- 玩具行業(yè)人才培養(yǎng)需求考核試卷
- 寧波九校高二上學期語文作文
- 烘爐設備維護與管理考核試卷
- 人教部編版七年級語文上冊《散步》示范課教學課件
- 《智慧旅游認知與實踐》課件-第九章 智慧旅行社
- 傳承勞動精神彰顯青春風采發(fā)言稿
- 智能物流無人機配送行業(yè)發(fā)展建議
- 數學新課程標準解讀(2)聚焦核心素養(yǎng)關注終身發(fā)展課件
- 高標準農田建設項目竣工驗收第三方服務采購項目
- AQ 2001-2018 煉鋼安全規(guī)程(正式版)
- 醫(yī)院護理培訓課件:《安全注射》
- 2024年415全民國家安全教育日知識競賽及答案
- 再生資源消防安全培訓
- 高考地理二輪復習課件專題3S技術
評論
0/150
提交評論