江西省上饒市玉山縣樟村中學2022-2023學年數學高三第一學期期末檢測試題含解析_第1頁
江西省上饒市玉山縣樟村中學2022-2023學年數學高三第一學期期末檢測試題含解析_第2頁
江西省上饒市玉山縣樟村中學2022-2023學年數學高三第一學期期末檢測試題含解析_第3頁
江西省上饒市玉山縣樟村中學2022-2023學年數學高三第一學期期末檢測試題含解析_第4頁
江西省上饒市玉山縣樟村中學2022-2023學年數學高三第一學期期末檢測試題含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年高三上數學期末模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數是奇函數,則的值為()A.-10 B.-9 C.-7 D.12.函數與在上最多有n個交點,交點分別為(,……,n),則()A.7 B.8 C.9 D.103.已知集合M={y|y=2x,x>0},N={x|y=lg(2x-xA.(1,+∞) B.(1,2) C.[2,+∞) D.[1,+∞)4.關于圓周率π,數學發展史上出現過許多很有創意的求法,如著名的浦豐實驗和查理斯實驗.受其啟發,我們也可以通過設計下面的實驗來估計的值:先請全校名同學每人隨機寫下一個都小于的正實數對;再統計兩數能與構成鈍角三角形三邊的數對的個數;最后再根據統計數估計的值,那么可以估計的值約為()A. B. C. D.5.雙曲線:(,)的一個焦點為(),且雙曲線的兩條漸近線與圓:均相切,則雙曲線的漸近線方程為()A. B. C. D.6.函數且的圖象是()A. B.C. D.7.設,隨機變量的分布列是01則當在內增大時,()A.減小,減小 B.減小,增大C.增大,減小 D.增大,增大8.某四棱錐的三視圖如圖所示,記為此棱錐所有棱的長度的集合,則().A.,且 B.,且C.,且 D.,且9.將3個黑球3個白球和1個紅球排成一排,各小球除了顏色以外其他屬性均相同,則相同顏色的小球不相鄰的排法共有()A.14種 B.15種 C.16種 D.18種10.第24屆冬奧會將于2022年2月4日至2月20日在北京市和張家口市舉行,為了解奧運會會旗中五環所占面積與單獨五個環面積之和的比值P,某學生做如圖所示的模擬實驗:通過計算機模擬在長為10,寬為6的長方形奧運會旗內隨機取N個點,經統計落入五環內部及其邊界上的點數為n個,已知圓環半徑為1,則比值P的近似值為()A. B. C. D.11.如圖,在中,點,分別為,的中點,若,,且滿足,則等于()A.2 B. C. D.12.已知,函數,若函數恰有三個零點,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.的二項展開式中,含項的系數為__________.14.在四面體中,分別是的中點.則下述結論:①四面體的體積為;②異面直線所成角的正弦值為;③四面體外接球的表面積為;④若用一個與直線垂直,且與四面體的每個面都相交的平面去截該四面體,由此得到一個多邊形截面,則該多邊形截面面積最大值為.其中正確的有_____.(填寫所有正確結論的編號)15.在《九章算術》中,將底面為矩形且有一條側棱與底面垂直的四棱錐稱之為陽馬.如圖,若四棱錐為陽馬,側棱底面,且,,設該陽馬的外接球半徑為,內切球半徑為,則__________.16.過且斜率為的直線交拋物線于兩點,為的焦點若的面積等于的面積的2倍,則的值為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(,為自然對數的底數),.(1)若有兩個零點,求實數的取值范圍;(2)當時,對任意的恒成立,求實數的取值范圍.18.(12分)已知函數,其導函數為,(1)若,求不等式的解集;(2)證明:對任意的,恒有.19.(12分)《山東省高考改革試點方案》規定:從2017年秋季高中入學的新生開始,不分文理科;2020年開始,高考總成績由語數外3門統考科目和物理、化學等六門選考科目構成.將每門選考科目的考生原始成績從高到低劃分為、、、、、、、共8個等級.參照正態分布原則,確定各等級人數所占比例分別為、、、、、、、.選考科目成績計入考生總成績時,將至等級內的考生原始成績,依照等比例轉換法則,分別轉換到、、、、、、、八個分數區間,得到考生的等級成績.某校高一年級共2000人,為給高一學生合理選科提供依據,對六個選考科目進行測試,其中物理考試原始成績基本服從正態分布.(1)求物理原始成績在區間的人數;(2)按高考改革方案,若從全省考生中隨機抽取3人,記表示這3人中等級成績在區間的人數,求的分布列和數學期望.(附:若隨機變量,則,,)20.(12分)已知兩數.(1)當時,求函數的極值點;(2)當時,若恒成立,求的最大值.21.(12分)已知矩陣的逆矩陣.若曲線:在矩陣A對應的變換作用下得到另一曲線,求曲線的方程.22.(10分)在平面直角坐標系中,曲線的參數方程為(是參數),以原點為極點,軸的正半軸為極軸建立極坐標系,直線的極坐標方程為.(1)求直線與曲線的普通方程,并求出直線的傾斜角;(2)記直線與軸的交點為是曲線上的動點,求點的最大距離.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

根據分段函數表達式,先求得的值,然后結合的奇偶性,求得的值.【詳解】因為函數是奇函數,所以,.故選:B【點睛】本題主要考查分段函數的解析式、分段函數求函數值,考查數形結合思想.意在考查學生的運算能力,分析問題、解決問題的能力.2、C【解析】

根據直線過定點,采用數形結合,可得最多交點個數,然后利用對稱性,可得結果.【詳解】由題可知:直線過定點且在是關于對稱如圖通過圖像可知:直線與最多有9個交點同時點左、右邊各四個交點關于對稱所以故選:C【點睛】本題考查函數對稱性的應用,數形結合,難點在于正確畫出圖像,同時掌握基礎函數的性質,屬難題.3、B【解析】M=y|y=N==x|∴M∩N=(1,2).故選B.4、D【解析】

由試驗結果知對0~1之間的均勻隨機數,滿足,面積為1,再計算構成鈍角三角形三邊的數對,滿足條件的面積,由幾何概型概率計算公式,得出所取的點在圓內的概率是圓的面積比正方形的面積,即可估計的值.【詳解】解:根據題意知,名同學取對都小于的正實數對,即,對應區域為邊長為的正方形,其面積為,若兩個正實數能與構成鈍角三角形三邊,則有,其面積;則有,解得故選:.【點睛】本題考查線性規劃可行域問題及隨機模擬法求圓周率的幾何概型應用問題.線性規劃可行域是一個封閉的圖形,可以直接解出可行域的面積;求解與面積有關的幾何概型時,關鍵是弄清某事件對應的面積,必要時可根據題意構造兩個變量,把變量看成點的坐標,找到試驗全部結果構成的平面圖形,以便求解.5、A【解析】

根據題意得到,化簡得到,得到答案.【詳解】根據題意知:焦點到漸近線的距離為,故,故漸近線為.故選:.【點睛】本題考查了直線和圓的位置關系,雙曲線的漸近線,意在考查學生的計算能力和轉化能力.6、B【解析】

先判斷函數的奇偶性,再取特殊值,利用零點存在性定理判斷函數零點分布情況,即可得解.【詳解】由題可知定義域為,,是偶函數,關于軸對稱,排除C,D.又,,在必有零點,排除A.故選:B.【點睛】本題考查了函數圖象的判斷,考查了函數的性質,屬于中檔題.7、C【解析】

,,判斷其在內的單調性即可.【詳解】解:根據題意在內遞增,,是以為對稱軸,開口向下的拋物線,所以在上單調遞減,故選:C.【點睛】本題考查了利用隨機變量的分布列求隨機變量的期望與方差,屬于中檔題.8、D【解析】

首先把三視圖轉換為幾何體,根據三視圖的長度,進一步求出個各棱長.【詳解】根據幾何體的三視圖轉換為幾何體為:該幾何體為四棱錐體,如圖所示:所以:,,.故選:D..【點睛】本題考查三視圖和幾何體之間的轉換,主要考查運算能力和轉換能力及思維能力,屬于基礎題.9、D【解析】

采取分類計數和分步計數相結合的方法,分兩種情況具體討論,一種是黑白依次相間,一種是開始僅有兩個相同顏色的排在一起【詳解】首先將黑球和白球排列好,再插入紅球.情況1:黑球和白球按照黑白相間排列(“黑白黑白黑白”或“白黑白黑白黑”),此時將紅球插入6個球組成的7個空中即可,因此共有2×7=14種;情況2:黑球或白球中僅有兩個相同顏色的排在一起(“黑白白黑白黑”、“黑白黑白白黑”、“白黑黑白黑白”“白黑白黑黑白”),此時紅球只能插入兩個相同顏色的球之中,共4種.綜上所述,共有14+4=18種.故選:D【點睛】本題考查排列組合公式的具體應用,插空法的應用,屬于基礎題10、B【解析】

根據比例關系求得會旗中五環所占面積,再計算比值.【詳解】設會旗中五環所占面積為,由于,所以,故可得.故選:B.【點睛】本題考查面積型幾何概型的問題求解,屬基礎題.11、D【解析】

選取為基底,其他向量都用基底表示后進行運算.【詳解】由題意是的重心,,∴,,∴,故選:D.【點睛】本題考查向量的數量積,解題關鍵是選取兩個不共線向量作為基底,其他向量都用基底表示參與運算,這樣做目標明確,易于操作.12、C【解析】

當時,最多一個零點;當時,,利用導數研究函數的單調性,根據單調性畫函數草圖,根據草圖可得.【詳解】當時,,得;最多一個零點;當時,,,當,即時,,在,上遞增,最多一個零點.不合題意;當,即時,令得,,函數遞增,令得,,函數遞減;函數最多有2個零點;根據題意函數恰有3個零點函數在上有一個零點,在,上有2個零點,如圖:且,解得,,.故選.【點睛】遇到此類問題,不少考生會一籌莫展.由于方程中涉及兩個參數,故按“一元化”想法,逐步分類討論,這一過程中有可能分類不全面、不徹底.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

寫出二項展開式的通項,然后取的指數為求得的值,則項的系數可求得.【詳解】,由,可得.含項的系數為.故答案為:【點睛】本題考查了二項式定理展開式、需熟記二項式展開式的通項公式,屬于基礎題.14、①③④.【解析】

補圖成長方體,在長方體中利用割補法求四面體的體積,和外接球的表面積,以及異面直線的夾角,作出截面即可計算截面面積的最值.【詳解】根據四面體特征,可以補圖成長方體設其邊長為,,解得補成長,寬,高分別為的長方體,在長方體中:①四面體的體積為,故正確②異面直線所成角的正弦值等價于邊長為的矩形的對角線夾角正弦值,可得正弦值為,故錯;③四面體外接球就是長方體的外接球,半徑,其表面積為,故正確;④由于,故截面為平行四邊形,可得,設異面直線與所成的角為,則,算得,.故正確.故答案為:①③④.【點睛】此題考查根據幾何體求體積,外接球的表面積,異面直線夾角和截面面積最值,關鍵在于熟練掌握點線面位置關系的處理方法,補圖法作為解決體積和外接球問題的常用方法,平常需要積累常見幾何體的補圖方法.15、【解析】

該陽馬補形所得到的長方體的對角線為外接球的直徑,由此能求出,內切球在側面內的正視圖是的內切圓,從而內切球半徑為,由此能求出.【詳解】四棱錐為陽馬,側棱底面,且,,設該陽馬的外接球半徑為,該陽馬補形所得到的長方體的對角線為外接球的直徑,,,側棱底面,且底面為正方形,內切球在側面內的正視圖是的內切圓,內切球半徑為,故.故答案為.【點睛】本題考查了幾何體外接球和內切球的相關問題,補形法的運用,以及數學文化,考查了空間想象能力,是中檔題.解決球與其他幾何體的切、接問題,關鍵是能夠確定球心位置,以及選擇恰當的角度做出截面.球心位置的確定的方法有很多,主要有兩種:(1)補形法(構造法),通過補形為長方體(正方體),球心位置即為體對角線的中點;(2)外心垂線法,先找出幾何體中不共線三點構成的三角形的外心,再找出過外心且與不共線三點確定的平面垂直的垂線,則球心一定在垂線上.16、2【解析】

聯立直線與拋物線的方程,根據一元二次方程的根與系數的關系以及面積關系求解即可.【詳解】如圖,設,由,則,由可得,由,則,所以,得.故答案為:2【點睛】此題考查了拋物線的性質,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】

(1)將有兩個零點轉化為方程有兩個相異實根,令求導,利用其單調性和極值求解;(2)將問題轉化為對一切恒成立,令,求導,研究單調性,求出其最值即可得結果.【詳解】(1)有兩個零點關于的方程有兩個相異實根由,知有兩個零點有兩個相異實根.令,則,由得:,由得:,在單調遞增,在單調遞減,又當時,,當時,當時,有兩個零點時,實數的取值范圍為;(2)當時,,原命題等價于對一切恒成立對一切恒成立.令令,,則在上單增又,,使即①當時,,當時,,即在遞減,在遞增,由①知函數在單調遞增即,實數的取值范圍為.【點睛】本題考查利用導數研究函數的單調性,極值,最值問題,考查學生轉化能力和分析能力,是一道難度較大的題目.18、(1)(2)證明見解析【解析】

(1)求出的導數,根據導函數的性質判斷函數的單調性,再利用函數單調性解函數型不等式;(2)構造函數,利用導數判斷在區間上單調遞減,結合可得結果.【詳解】(1)若,則.設,則,所以在上單調遞減,在上單調遞增.又當時,;當時,;當時,,所以所以在上單調遞增,又,所以不等式的解集為.(2)設,再令,,在上單調遞減,又,,,,,.即【點睛】本題考查利用函數的導數來判斷函數的單調性,再利用函數的單調性來解決不等式問題,屬于較難題.19、(Ⅰ)1636人;(Ⅱ)見解析.【解析】

(Ⅰ)根據正態曲線的對稱性,可將區間分為和兩種情況,然后根據特殊區間上的概率求出成績在區間內的概率,進而可求出相應的人數;(Ⅱ)由題意得成績在區間[61,80]的概率為,且,由此可得的分布列和數學期望.【詳解】(Ⅰ)因為物理原始成績,所以.所以物理原始成績在(47,86)的人數為(人).(Ⅱ)由題意得,隨機抽取1人,其成績在區間[61,80]內的概率為.所以隨機抽取三人,則的所有可能取值為0,1,2,3,且,所以,,,.所以的分布列為0123所以數學期望.【點睛】(1)解答第一問的關鍵是利用正態分布的三個特殊區間表示所求概率的區間,再根據特殊區間上的概率求解,解題時注意結合正態曲線的對稱性.(2)解答第二問的關鍵是判斷出隨機變量服從二項分布,然后可得分布列及其數學期望.當被抽取的總體的容量較大時,抽樣可認為是等可能的,進而可得隨機變量服從二項分布.20、(1)唯一的極大值點1,無極小值點.(2)1【解析】

(1)求出導函數,求得的解,確定此解兩側導數值的正負,確定極值點;(2)問題可變

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論