




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆云南省昭通市昭陽區樂居鎮中學九年級數學第一學期期末統考模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.如圖,將線段AB先向右平移5個單位,再將所得線段繞原點按順時針方向旋轉90°,得到線段AB,則點B的對應點B′的坐標是()A.(-4,1) B.(-1,2) C.(4,-1) D.(1,-2)2.下圖中,不是中心對稱圖形的是()A. B. C. D.3.下列二次根式能與合并的是()A. B. C. D.4.在下列幾何體中,主視圖、左視圖和俯視圖形狀都相同的是()A. B. C. D.5.同時擲兩個質地均勻的骰子,觀察向上一面的點數,兩個骰子的點數相同的概率為()A. B. C. D.6.(2017廣東省卷)如圖,在同一平面直角坐標系中,直線與雙曲線相交于兩點,已知點的坐標為,則點的坐標為()A. B. C. D.7.下表是二次函數y=ax2+bx+c的部分x,y的對應值:x…﹣1﹣0123…y…2m﹣1﹣﹣2﹣﹣12…可以推斷m的值為()A.﹣2 B.0 C. D.28.下列函數是二次函數的是()A.y=2x﹣3 B.y= C.y=(x﹣1)(x+3) D.9.如圖,△ABC是等腰直角三角形,BC是斜邊,將△ABP繞點A逆時針旋轉后,能與△ACP′重合,如果AP=3cm,那么PP′的長為()A. B. C. D.10.為了解我市居民用水情況,在某小區隨機抽查了20戶家庭,并將這些家庭的月用水量進行統計,結果如下表:月用水量(噸)456813戶數45731則關于這20戶家庭的月用水量,下列說法正確的是()A.中位數是5 B.平均數是5 C.眾數是6 D.方差是611.將拋物線y=x2﹣4x﹣4向左平移3個單位,再向上平移5個單位,得到拋物線的函數表達式為()A.y=(x+1)2﹣13 B.y=(x﹣5)2﹣3C.y=(x﹣5)2﹣13 D.y=(x+1)2﹣312.在平面直角坐標系中,把拋物線y=2x2繞原點旋轉180°,再向右平移1個單位,向下平移2個單位,所得的拋物線的函數表達式為()A.y=2(x﹣1)2﹣2 B.y=2(x+1)2﹣2C.y=﹣2(x﹣1)2﹣2 D.y=﹣2(x+1)2﹣2二、填空題(每題4分,共24分)13.如果拋物線與軸的一個交點的坐標是,那么與軸的另一個交點的坐標是___________.14.如圖,反比例函數的圖象與矩形相較于兩點,若是的中點,,則反比例函數的表達式為__________.15.某菜農搭建了一個橫截面為拋物線的大棚,尺寸如圖,若菜農身高為1.8m,他在不彎腰的情況下,在棚內的橫向活動范圍是__m.16.二次函數y=ax1+bx+c(a≠2)的部分圖象如圖,圖象過點(﹣1,2),對稱軸為直線x=1.下列結論:①4a+b=2;②9a+c>3b;③當x>﹣1時,y的值隨x值的增大而增大;④當函數值y<2時,自變量x的取值范圍是x<﹣1或x>5;⑤8a+7b+1c>2.其中正確的結論是_____.17.菱形邊長為4,,點為邊的中點,點為上一動點,連接、,并將沿翻折得,連接,取的中點為,連接,則的最小值為_____.18.如圖,是銳角的外接圓,是的切線,切點為,,連結交于,的平分線交于,連結.下列結論:①平分;②連接,點為的外心;③;④若點,分別是和上的動點,則的最小值是.其中一定正確的是__________(把你認為正確結論的序號都填上).三、解答題(共78分)19.(8分)已知關于x的方程x2+ax+a﹣2=1.(1)求證:不論a取何實數,該方程都有兩個不相等的實數根;(2)若該方程的一個根為1,求a的值及該方程的另一根.20.(8分)直線與雙曲線只有一個交點,且與軸、軸分別交于、兩點,AD垂直平分,交軸于點.(1)求直線、雙曲線的解析式;(2)過點作軸的垂線交雙曲線于點,求的面積.21.(8分)如圖,在中,,是上任意一點.(1)過三點作⊙,交線段于點(要求尺規作圖,不寫作法,但要保留作圖痕跡);(2)若弧DE=弧DB,求證:是⊙的直徑.22.(10分)如圖,在平面直角坐標系xOy中,矩形OABC的頂點A在x軸的正半軸上,頂點C在y軸的正半軸上,D是BC邊上的一點,OC:CD=5:3,DB=1.反比例函數y=(k≠0)在第一象限內的圖象經過點D,交AB于點E,AE:BE=1:2.(1)求這個反比例函數的表達式;(2)動點P在矩形OABC內,且滿足S△PAO=S四邊形OABC.①若點P在這個反比例函數的圖象上,求點P的坐標;②若點Q是平面內一點使得以A、B、P、Q為頂點的四邊形是菱形求點Q的坐標.23.(10分)如圖,是的直徑,為上一點,于點,交于點,與交于點為延長線上一點,且.(1)求證:是的切線;(2)求證:;(3)若,求的長.24.(10分)已知二次函數y1=x2﹣2x﹣3,一次函數y2=x﹣1.(1)在同一坐標系中,畫出這兩個函數的圖象;(2)根據圖形,求滿足y1>y2的x的取值范圍.25.(12分)解方程(1)x2-6x-7=0;(2)(2x-1)2=1.26.如圖,有四張背面相同的卡片A、B、C、D,卡片的正面分別印有正三角形、平行四邊形、圓、正五邊形(這些卡片除圖案不同外,其余均相同).把這四張卡片背面向上洗勻后,進行下列操作:(1)若任意抽取其中一張卡片,抽到的卡片既是中心對稱圖形又是軸對稱圖形的概率是;(2)若任意抽出一張不放回,然后再從余下的抽出一張.請用樹狀圖或列表表示摸出的兩張卡片所有可能的結果,求抽出的兩張卡片的圖形是中心對稱圖形的概率.
參考答案一、選擇題(每題4分,共48分)1、D【解析】在平面直角坐標系內,把一個圖形各個點的橫坐標都加上(或減去)一個整數a,相應的新圖形就是把原圖形向右(或向左)平移a個單位長度;如果把它各個點的縱坐標都加(或減去)一個整數a,相應的新圖形就是把原圖形向上(或向下)平移a個單位長度;圖形或點旋轉之后要結合旋轉的角度和圖形的特殊性質來求出旋轉后的點的坐標.常見的是旋轉特殊角度如:30°,45°,60°,90°,180°.【詳解】將線段AB先向右平移5個單位,點B(2,1),連接OB,順時針旋轉90°,則B'對應坐標為(1,-2),故選D.【點睛】本題考查了圖形的平移與旋轉,熟練運用平移與旋轉的性質是解題的關鍵.2、D【解析】根據把一個圖形繞某一點旋轉180°,如果旋轉后的圖形能夠與原來的圖形重合,那么這個圖形就叫做中心對稱圖形可得答案.【詳解】A、是中心對稱圖形,故此選項不合題意;
B、是中心對稱圖形,故此選項不合題意;
C、是中心對稱圖形,故此選項不合題意;
D、不是中心對稱圖形,故此選項符合題意;
故選:D.【點睛】考查了中心對稱圖形,關鍵是掌握中心對稱圖形定義.3、C【分析】化為最簡二次根式,然后根據同類二次根式的定義解答.【詳解】解:的被開方數是3,而=、=2、是最簡二次根式,不能再化簡,以上三數的被開方數分別是2、2、15,所以它們不是同類二次根式,不能合并,即選項A、B、D都不符合題意,=2的被開方數是3,與是同類二次根式,能合并,即選項C符合題意.故選:C.【點睛】本題考查同類二次根式的定義:化成最簡二次根式后,被開方數相同,這樣的二次根式叫做同類二次根式.4、C【分析】主視圖、左視圖、俯視圖是分別從物體正面、左面和上面看,所得到的圖形.依次找到主視圖、左視圖和俯視圖形狀都相同的圖形即可.【詳解】解:A、圓臺的主視圖和左視圖相同,都是梯形,俯視圖是圓環,故選項不符合題意;B、三棱柱的主視圖和左視圖、俯視圖都不相同,故選項不符合題意;C、球的三視圖都是大小相同的圓,故選項符合題意.D、圓錐的三視圖分別為等腰三角形,等腰三角形,含圓心的圓,故選項不符合題意;故選C.【點睛】本題考查了三視圖的有關知識,注意三視圖都相同的常見的幾何體有球和正方體.5、C【分析】首先列表,然后根據表格求得所有等可能的結果與兩個骰子的點數相同的情況,再根據概率公式求解即可.【詳解】列表得:(1,6)(2,6)(3,6)(4,6)(5,6)(6,6)(1,5)(2,5)(3,5)(4,5)(5,5)(6,5)(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)(1,3)(2,3)(3,3)(4,3)(5,3)(6,3)(1,2)(2,2)(3,2)(4,2)(5,2)(6,2)(1,1)(2,1)(3,1)(4,1)(5,1)(6,1)∴一共有36種等可能的結果,兩個骰子的點數相同的有6種情況,
∴兩個骰子的點數相同的概率為:故選:C【點睛】此題考查了樹狀圖法與列表法求概率.注意樹狀圖法與列表法可以不重不漏的表示出所有等可能的結果.用到的知識點為:概率=所求情況數與總情況數之比6、A【分析】過原點的直線與反比例函數圖象的交點關于原點成中心對稱,由此可得B的坐標.【詳解】與相交于A,B兩點∴A與B關于原點成中心對稱∵∴故選擇:A.【點睛】熟知反比例函數的對稱性是解題的關鍵.7、C【分析】首先根據表中的x、y的值確定拋物線的對稱軸,然后根據對稱性確定m的值即可.【詳解】解:觀察表格發現該二次函數的圖象經過點(,﹣)和(,﹣),所以對稱軸為x==1,∵,∴點(﹣,m)和(,)關于對稱軸對稱,∴m=,故選:C.【點睛】本題考查了二次函數的圖象與性質,解題的關鍵是通過表格信息確定拋物線的對稱軸.8、C【分析】根據二次函數的定義作出判斷.【詳解】解:A、該函數屬于一次函數,故本選項錯誤;B、該函數未知數在分母位置,不符合二次函數的定義,故本選項錯誤;C、該函數符合二次函數的定義,故本選項正確;D、該函數只有一個變量不符合二次函數的定義,故本選項錯誤;故選:C.【點睛】此題考查的是二次函數的判斷,掌握二次函數的定義是解決此題的關鍵.9、D【分析】由題意易證,則有,進而可得,最后根據勾股定理可求解.【詳解】解:∵△ABC是等腰直角三角形,∴∠BAC=90°,AB=AC,∵將△ABP繞點A逆時針旋轉后,能與△ACP′重合,∴,∵AP=3cm,∴,∵,∴,即,∴是等腰直角三角形,∴;故選D.【點睛】本題主要考查旋轉的性質及等腰直角三角形的性質與判定,熟練掌握旋轉的性質及等腰直角三角形的性質與判定是解題的關鍵.10、C【分析】根據中位數的定義、平均數的公式、眾數的定義和方差公式計算即可.【詳解】解:A、按大小排列這組數據,第10,11個數據的平均數是中位數,(6+6)÷2=6,故本選項錯誤;B、平均數=(4×4+5×5+6×7+8×3+13×1)÷20=6,故本選項錯誤;C、6出現了7次,出現的次數最多,則眾數是6,故本選項正確;D、方差是:S2=[4×(4﹣6)2+5×(5﹣6)2+7×(6﹣6)2+3×(8﹣6)2+(13﹣6)2]=4.1,故本選項錯誤;故選C.【點睛】此題考查的是中位數、平均數、眾數和方差的算法,掌握中位數的定義、平均數的公式、眾數的定義和方差公式是解決此題的關鍵.11、D【詳解】因為y=x2-4x-4=(x-2)2-8,以拋物線y=x2-4x-4的頂點坐標為(2,-8),把點(2,-8)向左平移1個單位,再向上平移5個單位所得對應點的坐標為(-1,-1),所以平移后的拋物線的函數表達式為y=(x+1)2-1.故選D.12、C【分析】拋物線y=1x1繞原點旋轉180°,即拋物線上的點(x,y)變為(-x,-y),代入可得拋物線方程,然后根據左加右減的規律即可得出結論.【詳解】解:∵把拋物線y=1x1繞原點旋轉180°,∴新拋物線解析式為:y=﹣1x1,∵再向右平移1個單位,向下平移1個單位,∴平移后拋物線的解析式為y=﹣1(x﹣1)1﹣1.故選:C.【點睛】本題考查了拋物線的平移變換規律,旋轉變換規律,掌握拋物線的平移和旋轉變換規律是解題的關鍵.二、填空題(每題4分,共24分)13、【分析】根據拋物線y=ax2+2ax+c,可以得到該拋物線的對稱軸,然后根據二次函數圖象具有對稱性和拋物線y=ax2+2ax+c與x軸的一個交點的坐標是(1,0),可以得到該拋物線與x軸的另一個交點坐標.【詳解】∵拋物線y=ax2+2ax+c=a(x+1)2-a+c,
∴該拋物線的對稱軸是直線x=-1,
∵拋物線y=ax2+2ax+c與x軸的一個交點的坐標是(1,0),
∴該拋物線與x軸的另一個交點的坐標是(-3,0),
故答案為:(-3,0).【點睛】此題考查二次函數的圖形及其性質,解題的關鍵是明確題意,利用二次函數的性質解答.14、【分析】設D(a,),則B縱坐標也為,代入反比例函數的y=,即可求得E的橫坐標,則根據三角形的面積公式即可求得k的值.【詳解】解:設D(a,),則B縱坐標也為,∵D是AB中點,∴點E橫坐標為2a,代入解析式得到縱坐標:,∵BE=BCEC=,∴E為BC的中點,S△BDE=,∴k=1.∴反比例函數的表達式為;故答案是:.【點睛】本題考查了反比例函數的性質,以及三角形的面積公式,正確表示出BE的長度是關鍵.15、1【分析】設拋物線的解析式為:y=ax2+b,由圖得知點(0,2.4),(1,0)在拋物線上,列方程組得到拋物線的解析式為:y=﹣x2+2.4,根據題意求出y=1.8時x的值,進而求出答案;【詳解】設拋物線的解析式為:y=ax2+b,由圖得知:點(0,2.4),(1,0)在拋物線上,∴,解得:,∴拋物線的解析式為:y=﹣x2+2.4,∵菜農的身高為1.8m,即y=1.8,則1.8=﹣x2+2.4,解得:x=(負值舍去)故他在不彎腰的情況下,橫向活動范圍是:1米,故答案為1.16、①④⑤.【分析】根據二次函數圖象的開口方向、對稱軸、頂點坐標、增減性以及二次函數與一元二次方程的關系,逐項判斷即可.【詳解】解:拋物線過點(﹣1,2),對稱軸為直線x=1.∴x==1,與x軸的另一個交點為(5,2),即,4a+b=2,故①正確;當x=﹣3時,y=9a﹣3b+c<2,即,9a+c<3b,因此②不正確;當x<1時,y的值隨x值的增大而增大,因此③不正確;拋物線與x軸的兩個交點為(﹣1,2),(5,2),又a<2,因此當函數值y<2時,自變量x的取值范圍是x<﹣1或x>5,故④正確;當x=3時,y=9a+3b+c>2,當x=4時,y=16a+4b+c>2,∴15a+7b+1c>2,又∵a<2,∴8a+7b+c>2,故⑤正確;綜上所述,正確的結論有:①④⑤,故答案為:①④⑤.【點睛】本題主要考查二次函數圖像性質,解決本題的關鍵是要熟練掌握二次函數圖像性質.17、【分析】取BC的中點為H,在HC上取一點I使,相似比為,由相似三角形的性質可得,即當點D、G、I三點共線時,最小,由點D作BC的垂線交BC延長線于點P,由銳角三角函數和勾股定理求得DI的長度,即可根據求解.【詳解】取BC的中點為H,在HC上取一點I使,相似比為∵G為的中點∴∵且相似比為,得當點D、G、I三點共線時,最小由點D作BC的垂線交BC延長線于點P即由勾股定理得故答案為:.【點睛】本題考查了線段長度的最值問題,掌握相似三角形的性質以及判定定理、銳角三角函數、勾股定理是解題的關鍵.18、【分析】如圖1,連接,通過切線的性質證,進而由,即可由垂徑定理得到F是的中點,根據圓周角定理可得,可得平分;由三角形的外角性質和同弧所對的圓周角相等可得,可得,可得點為得外心;如圖,過點C作交的延長線與點通過證明,可得;如圖,作點關于的對稱點,當點在線段上,且時,.【詳解】如圖,連接,∵是的切線,∴,∵∴,且為半徑∴垂直平分∴∴∴平分,故正確點的外心,故正確;如圖,過點C作交的延長線與點,故正確;如圖,作點關于的對稱點,點與點關于對稱,當點在線段上,且時,,且∴的最小值為;故正確.故答案為:.【點睛】本題是相似綜合題,考查了圓的相關知識,相似三角形的判定和性質,軸對稱的性質,靈活運用這些性質進行推理是本題的關鍵.三、解答題(共78分)19、(1)見解析;(2)a=,x1=﹣【分析】(1)根據根的判別式即可求解;(2)將x=1代入方程x2+ax+a﹣2=1,求出a,再利用根與系數的關系求出方程的另一根.【詳解】解:(1)∵△=a2﹣4(a﹣2)=a2﹣4a+8=a2﹣4a+4+4=(a﹣2)2+4≥1,∴不論a取何實數,該方程都有兩個不相等的實數根.(2)將x=1代入方程x2+ax+a﹣2=1得1+a+a﹣2=1,解得a=;∴方程為x2+x﹣=1,即2x2+x﹣3=1,設另一根為x1,則1×x1==﹣,∴另一根x1=﹣.【點睛】此題主要考查一元二次方程根的求解,解題的關鍵是熟知根的判別式與根與系數的關系.20、(1);;(2).【分析】(1)由題意利用待定系數法求一次函數以及反比例函數解析式即可;(2)根據題意求出BE和BD的值,運用三角形面積公式即可得解.【詳解】解:(1)由已知得,,∴.將點、點坐標代入,得,解得,直線解析式為;將點坐標代入得,∴反比例函數的解析式為.(2)∵E和B同橫軸坐標,∴當時,即,∵,,D(1,0)∴BD=1,即為以BE為底的高,∴.【點睛】本題考查反比例函數和幾何圖形的綜合問題,熟練掌握待定系數法求反比例函數解析式以及運用數形結合思維分析是解題的關鍵.21、(1)如圖1所示見解析;(2)見解析.【解析】(1)作AB與BD的垂線,交于點O,點O就是△ABD的外心,⊙O交線段AC于點E;
(2)連結DE,根據圓周角定理,等腰三角形的性質,即可得到AD是等腰三角形ABC底邊上的高線,從而證明AB是⊙O的直徑;【詳解】(1)如圖1所示(2)如圖2連結,∵∴∵,∴,∴∠ADB=90°,∴是⊙的直徑.【點睛】本題考查作圖-復雜作圖,線段垂直平分線的作法,等腰三角形的性質,圓周角定理以及方程思想的應用等.22、(1)y=;(2)①(,4);②(1,3)或(3﹣2,﹣1).【分析】(1)設點B的坐標為(m,n),則點E的坐標為(m,n),點D的坐標為(m﹣1,n),利用反比例函數圖像上的點的坐標特征可求出m的值,之后進一步求出n的值,然后進一步求解即可;(2)根據三角形的面積公式與矩形的面積公式結合S△PAO=S四邊形OABC即可進一步求出P的縱坐標.①若點P在這個反比例函數的圖象上,利用反比例函數圖象上點的坐標特征可求出點P的坐標;②由點A,B的坐標及點P的總坐標可得出AP≠BP,進而可得出AB不能為對角線,設點P的坐標為(t,4),分AP=AB和BP=AB兩種情況考慮:(i)當AB=AP時,利用兩點間的距離公式可求出t值,進而可得出點P1的坐標,結合P1Q1的長可求出點Q1的坐標;(ii)當BP=AB時,利用兩點間的距離公式可求出t值,進而可得出點P2的坐標,結合P2Q2的長可求出點Q2的坐標.【詳解】(1)設點B的坐標為(m,n),則點E的坐標為(m,n),點D的坐標為(m﹣1,n).∵點D,E在反比例函數y=(k≠0)的圖象上,∴k=mn=(m﹣1)n,∴m=3.∵OC:CD=5:3,∴n:(m﹣1)=5:3,∴n=5,∴k=mn=×3×5=15,∴反比例函數的表達式為y=.(2)∵S△PAO=S四邊形OABC,∴OA?yP=OA?OC,∴yP=OC=4.當y=4時,=4,解得:x=,∴若點P在這個反比例函數的圖象上,點P的坐標為(,4).②由(1)可知:點A的坐標為(3,0),點B的坐標為(3,5),∵yP=4,yA+yB=5,∴,∴AP≠BP,∴AB不能為對角線.設點P的坐標為(t,4).分AP=AB和BP=AB兩種情況考慮(如圖所示):(i)當AB=AP時,(3﹣t)2+(4﹣0)2=52,解得:t1=1,t2=12(舍去),∴點P1的坐標為(1,4).又∵P1Q1=AB=5,∴點Q1的坐標為(1,3);(ii)當BP=AB時,(3﹣t)2+(5﹣4)2=52,解得:t3=3﹣2,t4=3+2(舍去),∴點P2的坐標為(3﹣2,4).又∵P2Q2=AB=5,∴點Q2的坐標為(3﹣2,﹣1).綜上所述:點Q的坐標為(1,3)或(3﹣2,﹣1).【點睛】本題主要考查了反比例函數的綜合運用,熟練掌握相關概念是解題關鍵.23、(1)證明見解析;(2)證明見解析;(3)【分析】(1)欲證明BD是⊙O的切線,只要證明BD⊥AB;
(2)連接AC,證明△FCM∽△FAC即可解決問題;
(3)連接BF,想辦法求出BF,FM即可解決問題.【詳解】(1)∵,
∴∠AFC=∠ABC,
又∵∠AFC=∠ODB,
∴∠ABC=∠ODB,
∵OE⊥BC,
∴∠BED=90°,
∴∠ODB+∠EBD=90°,
∴∠ABC+∠EBD=90°,
∴OB⊥BD,
∴BD是⊙O的切線;
(2)連接AC,
∵OF⊥BC,
∴,,
∴∠BCF=∠FAC,
又∵∠CFM=∠AFC,
∴△FCM∽△FA
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 合作項目股份合同分配協議
- 強化項目管理考試分析能力的方案試題及答案
- 【核心素養】部編版初中語文八年級上冊16《 散文二篇》 教案+導學案(師生版)+同步測試(含答案)
- 委托代理記賬合同協議
- 特許金融分析師考試學習策略試題及答案
- 特許金融分析師考試解答技巧分享試題及答案
- 項目評審指標的選定與分析試題及答案
- 錦囊妙計應對證券從業資格證的試題及答案
- 項目管理未來展望試題及答案
- 政治 (道德與法治)九年級上冊(道德與法治)我們的夢想教案及反思
- CIE1931-色坐標-三刺激值
- 銀行客戶經營策略分析報告總結
- 辦公設備項目安裝調試方案
- (多種情景)建設工程施工合同通用條款模板
- 管理溝通與人際交往概述
- 唇部整形美容手術知情同意書
- 如何進行ESG評級
- 大單元教學設計 統編版三年級下冊道德與法治 第二單元備課教案
- 2024年陜西普通高中學業水平考試通用技術試題
- 《HSK標準教程3》第1課
- 高中生如何正確處理男女同學之間的關系詳解
評論
0/150
提交評論