2023-2024學年江蘇省徐州市部分重點名校中考考前最后一卷數學試卷含解析_第1頁
2023-2024學年江蘇省徐州市部分重點名校中考考前最后一卷數學試卷含解析_第2頁
2023-2024學年江蘇省徐州市部分重點名校中考考前最后一卷數學試卷含解析_第3頁
2023-2024學年江蘇省徐州市部分重點名校中考考前最后一卷數學試卷含解析_第4頁
2023-2024學年江蘇省徐州市部分重點名校中考考前最后一卷數學試卷含解析_第5頁
已閱讀5頁,還剩19頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年江蘇省徐州市部分重點名校中考考前最后一卷數學試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.益陽市高新區某廠今年新招聘一批員工,他們中不同文化程度的人數見下表:文化程度高中大專本科碩士博士人數9172095關于這組文化程度的人數數據,以下說法正確的是:()A.眾數是20 B.中位數是17 C.平均數是12 D.方差是262.如圖,這是一個幾何體的三視圖,根據圖中所示數據計算這個幾何體的側面積為()A.9π B.10π C.11π D.12π3.如圖,在熱氣球C處測得地面A、B兩點的俯角分別為30°、45°,熱氣球C的高度CD為100米,點A、D、B在同一直線上,則AB兩點的距離是()A.200米 B.200米 C.220米 D.100米4.如圖,將函數的圖象沿y軸向上平移得到一條新函數的圖象,其中點A(-4,m),B(-1,n),平移后的對應點分別為點A'、B'.若曲線段AB掃過的面積為9(圖中的陰影部分),則新圖象的函數表達式是()A. B. C. D.5.如圖,為等邊三角形,要在外部取一點,使得和全等,下面是兩名同學做法:()甲:①作的角平分線;②以為圓心,長為半徑畫弧,交于點,點即為所求;乙:①過點作平行于的直線;②過點作平行于的直線,交于點,點即為所求.A.兩人都正確 B.兩人都錯誤 C.甲正確,乙錯誤 D.甲錯誤,乙正確6.能說明命題“對于任何實數a,|a|>﹣a”是假命題的一個反例可以是()A.a=﹣2 B.a= C.a=1 D.a=7.把8a3﹣8a2+2a進行因式分解,結果正確的是()A.2a(4a2﹣4a+1) B.8a2(a﹣1) C.2a(2a﹣1)2 D.2a(2a+1)28.如圖,將甲、乙、丙、丁四個小正方形中的一個剪掉,使余下的部分不能圍成一個正方體,剪掉的這個小正方形是A.甲 B.乙C.丙 D.丁9.2018年1月,“墨子號”量子衛星實現了距離達7600千米的洲際量子密鑰分發,這標志著“墨子號”具備了洲際量子保密通信的能力.數字7600用科學記數法表示為()A.0.76×104 B.7.6×103 C.7.6×104 D.76×10210.下列關于x的方程中一定沒有實數根的是()A. B. C. D.11.如圖,在矩形ABCD中,AB=2,AD=3,點E是BC邊上靠近點B的三等分點,動點P從點A出發,沿路徑A→D→C→E運動,則△APE的面積y與點P經過的路徑長x之間的函數關系用圖象表示大致是()A. B. C. D.12.解分式方程,分以下四步,其中,錯誤的一步是()A.方程兩邊分式的最簡公分母是(x﹣1)(x+1)B.方程兩邊都乘以(x﹣1)(x+1),得整式方程2(x﹣1)+3(x+1)=6C.解這個整式方程,得x=1D.原方程的解為x=1二、填空題:(本大題共6個小題,每小題4分,共24分.)13.計算2x3·x2的結果是_______.14.已知一個等腰三角形的兩邊長分別為2和4,則該等腰三角形的周長是.15.分解因式:__________.16.如圖,數軸上點A、B、C所表示的數分別為a、b、c,點C是線段AB的中點,若原點O是線段AC上的任意一點,那么a+b-2c=______.17.在△ABC中,AB=AC,∠A=36°,DE是AB的垂直平分線,DE交AB于點D,交AC于點E,連接BE.下列結論①BE平分∠ABC;②AE=BE=BC;③△BEC周長等于AC+BC;④E點是AC的中點.其中正確的結論有_____(填序號)18.如圖,點、、在直線上,點,,在直線上,以它們為頂點依次構造第一個正方形,第二個正方形,若的橫坐標是1,則的坐標是______,第n個正方形的面積是______.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)甲、乙兩人分別站在相距6米的A、B兩點練習打羽毛球,已知羽毛球飛行的路線為拋物線的一部分,甲在離地面1米的C處發出一球,乙在離地面1.5米的D處成功擊球,球飛行過程中的最高點H與甲的水平距離AE為4米,現以A為原點,直線AB為x軸,建立平面直角坐標系(如圖所示).求羽毛球飛行的路線所在的拋物線的表達式及飛行的最高高度.20.(6分)Rt△ABC中,∠ABC=90°,以AB為直徑作⊙O交AC邊于點D,E是邊BC的中點,連接DE,OD.(1)如圖①,求∠ODE的大小;(2)如圖②,連接OC交DE于點F,若OF=CF,求∠A的大小.21.(6分)如圖,已知拋物線經過,兩點,頂點為.(1)求拋物線的解析式;(2)將繞點順時針旋轉后,點落在點的位置,將拋物線沿軸平移后經過點,求平移后所得圖象的函數關系式;(3)設(2)中平移后,所得拋物線與軸的交點為,頂點為,若點在平移后的拋物線上,且滿足的面積是面積的2倍,求點的坐標.22.(8分)解不等式組:,并求出該不等式組所有整數解的和.23.(8分)如圖,大樓AB的高為16m,遠處有一塔CD,小李在樓底A處測得塔頂D處的仰角為60°,在樓頂B處測得塔頂D處的仰角為45°,其中A、C兩點分別位于B、D兩點正下方,且A、C兩點在同一水平線上,求塔CD的高.(=1.73,結果保留一位小數.)24.(10分)如圖,小明今年國慶節到青城山游玩,乘坐纜車,當登山纜車的吊箱經過點A到達點B時,它經過了200m,纜車行駛的路線與水平夾角∠α=16°,當纜車繼續由點B到達點D時,它又走過了200m,纜車由點B到點D的行駛路線與水平面夾角∠β=42°,求纜車從點A到點D垂直上升的距離.(結果保留整數)(參考數據:sin16°≈0.27,cos16°≈0.77,sin42°≈0.66,cos42°≈0.74)25.(10分)我市正在開展“食品安全城市”創建活動,為了解學生對食品安全知識的了解情況,學校隨機抽取了部分學生進行問卷調查,將調查結果按照“A非常了解、B了解、C了解較少、D不了解”四類分別進行統計,并繪制了下列兩幅統計圖(不完整).請根據圖中信息,解答下列問題:此次共調查了名學生;扇形統計圖中D所在扇形的圓心角為;將上面的條形統計圖補充完整;若該校共有800名學生,請你估計對食品安全知識“非常了解”的學生的人數.26.(12分)在△ABC中,∠ACB=45°.點D(與點B、C不重合)為射線BC上一動點,連接AD,以AD為一邊且在AD的右側作正方形ADEF.(1)如果AB=AC.如圖①,且點D在線段BC上運動.試判斷線段CF與BD之間的位置關系,并證明你的結論.(2)如果AB≠AC,如圖②,且點D在線段BC上運動.(1)中結論是否成立,為什么?(3)若正方形ADEF的邊DE所在直線與線段CF所在直線相交于點P,設AC=4,BC=3,CD=x,求線段CP的長.(用含x的式子表示)27.(12分)如圖,AB、CD是⊙O的直徑,DF、BE是弦,且DF=BE,求證:∠D=∠B.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】

根據眾數、中位數、平均數以及方差的概念求解.【詳解】A、這組數據中9出現的次數最多,眾數為9,故本選項錯誤;B、因為共有5組,所以第3組的人數為中位數,即9是中位數,故本選項錯誤;C、平均數==12,故本選項正確;D、方差=[(9-12)2+(17-12)2+(20-12)2+(9-12)2+(5-12)2]=,故本選項錯誤.故選C.【點睛】本題考查了中位數、平均數、眾數的知識,解答本題的關鍵是掌握各知識點的概念.2、B【解析】【分析】由三視圖可判斷出幾何體的形狀,進而利用圓錐的側面積公式求出答案.【詳解】由題意可得此幾何體是圓錐,底面圓的半徑為:2,母線長為:5,故這個幾何體的側面積為:π×2×5=10π,故選B.【點睛】本題考查了由三視圖判斷幾何體的形狀以及圓錐側面積求法,正確得出幾何體的形狀是解題關鍵.3、D【解析】

在熱氣球C處測得地面B點的俯角分別為45°,BD=CD=100米,再在Rt△ACD中求出AD的長,據此即可求出AB的長.【詳解】∵在熱氣球C處測得地面B點的俯角分別為45°,∴BD=CD=100米,∵在熱氣球C處測得地面A點的俯角分別為30°,∴AC=2×100=200米,∴AD==100米,∴AB=AD+BD=100+100=100(1+)米,故選D.【點睛】本題考查了解直角三角形的應用--仰角、俯角問題,要求學生能借助仰角構造直角三角形并解直角三角形.4、D【解析】分析:過A作AC∥x軸,交B′B的延長線于點C,過A′作A′D∥x軸,交B′B的于點D,則C(-1,m),AC=-1-(-1)=3,根據平移的性質以及曲線段AB掃過的面積為9(圖中的陰影部分),得出AA′=3,然后根據平移規律即可求解.詳解:過A作AC∥x軸,交B′B的延長線于點C,過A′作A′D∥x軸,交B′B的于點D,則C(-1,m),∴AC=-1-(-1)=3,∵曲線段AB掃過的面積為9(圖中的陰影部分),∴矩形ACDA′的面積等于9,∴AC·AA′=3AA′=9,∴AA′=3,∴新函數的圖是將函數y=(x-2)2+1的圖象沿y軸向上平移3個單位長度得到的,∴新圖象的函數表達式是y=(x-2)2+1+3=(x-2)2+1.故選D.點睛:此題主要考查了二次函數圖象變換以及矩形的面積求法等知識,根據已知得出AA′的長度是解題關鍵.5、A【解析】

根據題意先畫出相應的圖形,然后進行推理論證即可得出結論.【詳解】甲的作法如圖一:∵為等邊三角形,AD是的角平分線∴由甲的作法可知,在和中,故甲的作法正確;乙的作法如圖二:在和中,故乙的作法正確;故選:A.【點睛】本題主要借助尺規作圖考查全等三角形的判定,掌握全等三角形的判定方法是解題的關鍵.6、A【解析】

將各選項中所給a的值代入命題“對于任意實數a,”中驗證即可作出判斷.【詳解】(1)當時,,此時,∴當時,能說明命題“對于任意實數a,”是假命題,故可以選A;(2)當時,,此時,∴當時,不能說明命題“對于任意實數a,”是假命題,故不能B;(3)當時,,此時,∴當時,不能說明命題“對于任意實數a,”是假命題,故不能C;(4)當時,,此時,∴當時,不能說明命題“對于任意實數a,”是假命題,故不能D;故選A.【點睛】熟知“通過舉反例說明一個命題是假命題的方法和求一個數的絕對值及相反數的方法”是解答本題的關鍵.7、C【解析】

首先提取公因式2a,進而利用完全平方公式分解因式即可.【詳解】解:8a3﹣8a2+2a=2a(4a2﹣4a+1)=2a(2a﹣1)2,故選C.【點睛】本題因式分解中提公因式法與公式法的綜合運用.8、D【解析】解:將如圖所示的圖形剪去一個小正方形,使余下的部分不能圍成一個正方體,編號為甲乙丙丁的小正方形中剪去的是丁.故選D.9、B【解析】

科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>10時,n是正數;當原數的絕對值<1時,n是負數.【詳解】解:7600=7.6×103,故選B.【點睛】此題考查科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.10、B【解析】

根據根的判別式的概念,求出△的正負即可解題.【詳解】解:A.x2-x-1=0,△=1+4=50,∴原方程有兩個不相等的實數根,B.,△=36-144=-1080,∴原方程沒有實數根,C.,,△=10,∴原方程有兩個不相等的實數根,D.,△=m2+80,∴原方程有兩個不相等的實數根,故選B.【點睛】本題考查了根的判別式,屬于簡單題,熟悉根的判別式的概念是解題關鍵.11、B【解析】

由題意可知,當時,;當時,;當時,.∵時,;時,.∴結合函數解析式,可知選項B正確.【點睛】考點:1.動點問題的函數圖象;2.三角形的面積.12、D【解析】

先去分母解方程,再檢驗即可得出.【詳解】方程無解,雖然化簡求得,但是將代入原方程中,可發現和的分母都為零,即無意義,所以,即方程無解【點睛】本題考查了分式方程的求解與檢驗,在分式方程中,一般求得的x值都需要進行檢驗二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】試題分析:根據單項式乘以單項式,結合同底數冪相乘,底數不變,指數相加,可知2x3·x2=2x3+2=2x5.故答案為:2x514、1.【解析】試題分析:因為2+2<4,所以等腰三角形的腰的長度是4,底邊長2,周長:4+4+2=1,答:它的周長是1,故答案為1.考點:等腰三角形的性質;三角形三邊關系.15、a(a-4)2【解析】

首先提取公因式a,進而利用完全平方公式分解因式得出即可.【詳解】故答案為:【點睛】本題主要考查因式分解,熟練掌握提取公因式法和公式法是解題的關鍵.分解一定要徹底.16、1【解析】∵點A、B、C所表示的數分別為a、b、c,點C是線段AB的中點,∴由中點公式得:c=,∴a+b=2c,∴a+b-2c=1.故答案為1.17、①②③【解析】試題分析:根據三角形內角和定理求出∠ABC、∠C的度數,根據線段垂直平分線的性質得到EA=EB,根據等腰三角形的判定定理和三角形的周長公式計算即可.解:∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵DE是AB的垂直平分線,∴EA=EB,∴∠EBA=∠A=36°,∴∠EBC=36°,∴∠EBA=∠EBC,∴BE平分∠ABC,①正確;∠BEC=∠EBA+∠A=72°,∴∠BEC=∠C,∴BE=BC,∴AE=BE=BC,②正確;△BEC周長=BC+CE+BE=BC+CE+EA=AC+BC,③正確;∵BE>EC,AE=BE,∴AE>EC,∴點E不是AC的中點,④錯誤,故答案為①②③.考點:線段垂直平分線的性質;等腰三角形的判定與性質.18、(4,2),【解析】

由的橫坐標是1,可得,利用兩個函數解析式求出點、的坐標,得出的長度以及第1個正方形的面積,求出的坐標;然后再求出的坐標,得出第2個正方形的面積,求出的坐標;再求出、的坐標,得出第3個正方形的面積;從而得出規律即可得到第n個正方形的面積.【詳解】解:點、、在直線上,的橫坐標是1,

點,,在直線上,

,,

,,

第1個正方形的面積為:;

,,,

第2個正方形的面積為:;

,,

第3個正方形的面積為:;

第n個正方形的面積為:.

故答案為,.【點睛】本題考查了一次函數圖象上點的坐標特征,正方形的性質以及規律型中圖形的變化規律,解題的關鍵是找出規律本題難度適中,解決該題型題目時,根據給定的條件求出第1、2、3個正方形的邊長,根據數據的變化找出變化規律是關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、米.【解析】

先求拋物線對稱軸,再根據待定系數法求拋物線解析式,再求函數最大值.【詳解】由題意得:C(0,1),D(6,1.5),拋物線的對稱軸為直線x=4,設拋物線的表達式為:y=ax2+bx+1(a≠0),則據題意得:,解得:,∴羽毛球飛行的路線所在的拋物線的表達式為:y=﹣x2+x+1,∵y=﹣(x﹣4)2+,∴飛行的最高高度為:米.【點睛】本題考核知識點:二次函數的應用.解題關鍵點:熟記二次函數的基本性質.20、(1)∠ODE=90°;(2)∠A=45°.【解析】分析:(Ⅰ)連接OE,BD,利用全等三角形的判定和性質解答即可;(Ⅱ)利用中位線的判定和定理解答即可.詳解:(Ⅰ)連接OE,BD.∵AB是⊙O的直徑,∴∠ADB=90°,∴∠CDB=90°.∵E點是BC的中點,∴DE=BC=BE.∵OD=OB,OE=OE,∴△ODE≌△OBE,∴∠ODE=∠OBE.∵∠ABC=90°,∴∠ODE=90°;(Ⅱ)∵CF=OF,CE=EB,∴FE是△COB的中位線,∴FE∥OB,∴∠AOD=∠ODE,由(Ⅰ)得∠ODE=90°,∴∠AOD=90°.∵OA=OD,∴∠A=∠ADO=.點睛:本題考查了圓周角定理,關鍵是根據學生對全等三角形的判定方法及切線的判定等知識的掌握情況解答.21、(1)拋物線的解析式為.(2)平移后的拋物線解析式為:.(3)點的坐標為或.【解析】分析:(1)利用待定系數法,將點A,B的坐標代入解析式即可求得;(2)根據旋轉的知識可得:A(1,0),B(0,2),∴OA=1,OB=2,可得旋轉后C點的坐標為(3,1),當x=3時,由y=x2-3x+2得y=2,可知拋物線y=x2-3x+2過點(3,2)∴將原拋物線沿y軸向下平移1個單位后過點C.∴平移后的拋物線解析式為:y=x2-3x+1;(3)首先求得B1,D1的坐標,根據圖形分別求得即可,要注意利用方程思想.詳解:(1)已知拋物線經過,,∴,解得,∴所求拋物線的解析式為.(2)∵,,∴,,可得旋轉后點的坐標為.當時,由得,可知拋物線過點.∴將原拋物線沿軸向下平移1個單位長度后過點.∴平移后的拋物線解析式為:.(3)∵點在上,可設點坐標為,將配方得,∴其對稱軸為.由題得B1(0,1).①當時,如圖①,∵,∴,∴,此時,∴點的坐標為.②當時,如圖②,同理可得,∴,此時,∴點的坐標為.綜上,點的坐標為或.點睛:此題屬于中考中的壓軸題,難度較大,知識點考查的較多而且聯系密切,需要學生認真審題.此題考查了二次函數與一次函數的綜合知識,解題的關鍵是要注意數形結合思想的應用.22、1【解析】

分別求出每一個不等式的解集,根據口訣:同大取大、同小取小、大小小大中間找、大大小小無解了確定不等式組的解集.【詳解】解:,解不等式①得:x≤3,解不等式②得:x>﹣2,所以不等式組的解集為:﹣2<x≤3,所以所有整數解的和為:﹣1+0+1+2+3=1.【點睛】本題考查的是解一元一次不等式組,正確求出每一個不等式解集是基礎,熟知“同大取大;同小取小;大小小大中間找;大大小小找不到”的原則是解答此題的關鍵.23、塔CD的高度為37.9米【解析】試題分析:首先分析圖形,根據題意構造直角三角形.本題涉及兩個直角三角形,即Rt△BED和Rt△DAC,利用已知角的正切分別計算,可得到一個關于AC的方程,從而求出DC.試題解析:作BE⊥CD于E.可得Rt△BED和矩形ACEB.則有CE=AB=16,AC=BE.在Rt△BED中,∠DBE=45°,DE=BE=AC.在Rt△DAC中,∠DAC=60°,DC=ACtan60°=AC.∵16+DE=DC,∴16+AC=AC,解得:AC=8+8=DE.所以塔CD的高度為(8+24)米≈37.9米,答:塔CD的高度為37.9米.24、纜車垂直上升了186m.【解析】

在Rt中,米,在Rt中,即可求出纜車從點A到點D垂直上升的距離.【詳解】解:在Rt中,斜邊AB=200米,∠α=16°,(m),在Rt中,斜邊BD=200米,∠β=42°,因此纜車垂直上升的距離應該是BC+DF=186(米).答:纜車垂直上升了186米.【點睛】本題考查了解直角三角形的應用-坡度坡角問題,銳角三角函數的定義,結合圖形理解題意是解決問題的關鍵.25、(1)120;(2)54°;(3)詳見解析(4)1.【解析】

(1)根據B的人數除以占的百分比即可得到總人數;(2)先根據題意列出算式,再求出即可;(3)先求出對應的人數,再畫出即可;(4)先列出算式,再求出即可.【詳解】(1)(25+23)÷40%=120(名),即此次共調查了120名學生,故答案為120;(2)360°×=54°,即扇形統計圖中D所在扇形的圓心角為54°,故答案為54°;(3)如圖所示:;(4)800×=1(人),答:估計對食品安全知識“非常了解”的學生的人數是1人.【點睛】本題考查了條形統計圖、扇形統計圖,總體、個體、樣本、樣本容量,用樣本估計總體等知識點,兩圖結合是解題的關鍵.26、(1)CF與BD位置關系是垂直,理由見解析;(2)AB≠AC時,CF⊥BD的結論成立,理由見解析;(3)見解析【解析】

(1)由∠ACB=15°,AB=AC,得∠ABD=∠ACB=15°;可得∠BAC=90°,由正方形ADEF,可得∠DAF=90°,AD=AF,∠DAF=∠DAC+∠CAF;∠BAC=∠BAD+∠DAC;得∠CAF=∠BAD.可證△DAB≌△FAC(SAS),得∠ACF=∠ABD=15°,得∠BCF=∠ACB+∠ACF=90°.即CF⊥BD.

(2)過點A作AG⊥AC交BC于點G,可得出AC=AG,易證:△GAD≌△CAF,所以∠ACF=∠AGD=15°,∠BCF=∠ACB+∠ACF=90°.即CF⊥BD.

(3)若正方形ADEF的邊DE所在直線與線段CF所在直線相交于點P,設AC=1,BC=3,CD=x,求線段CP的長.考慮點D的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論