




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年高三上數學期末模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知數列為等差數列,為其前項和,,則()A. B. C. D.2.某幾何體的三視圖如圖所示,則該幾何體的體積為()A. B. C. D.3.若與互為共軛復數,則()A.0 B.3 C.-1 D.44.若,則的值為()A. B. C. D.5.已知函數,關于x的方程f(x)=a存在四個不同實數根,則實數a的取值范圍是()A.(0,1)∪(1,e) B.C. D.(0,1)6.下圖是來自古希臘數學家希波克拉底所研究的幾何圖形,此圖由三個半圓構成,三個半圓的直徑分別為直角三角形的斜邊、直角邊,已知以直角邊為直徑的半圓的面積之比為,記,則()A. B. C.1 D.7.某地區高考改革,實行“3+2+1”模式,即“3”指語文、數學、外語三門必考科目,“1”指在物理、歷史兩門科目中必選一門,“2”指在化學、生物、政治、地理以及除了必選一門以外的歷史或物理這五門學科中任意選擇兩門學科,則一名學生的不同選科組合有()A.8種 B.12種 C.16種 D.20種8.若函數有且僅有一個零點,則實數的值為()A. B. C. D.9.集合的真子集的個數是()A. B. C. D.10.展開項中的常數項為A.1 B.11 C.-19 D.5111.對兩個變量進行回歸分析,給出如下一組樣本數據:,,,,下列函數模型中擬合較好的是()A. B. C. D.12.已知底面為正方形的四棱錐,其一條側棱垂直于底面,那么該四棱錐的三視圖可能是下列各圖中的()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在平面直角坐標系中,若函數在處的切線與圓存在公共點,則實數的取值范圍為_____.14.二項式的展開式中項的系數為_____.15.“直線l1:與直線l2:平行”是“a=2”的_______條件(填“充分不必要”、“必要不充分”、“充分必要”或“既不充分又不必要”).16.經過橢圓中心的直線與橢圓相交于、兩點(點在第一象限),過點作軸的垂線,垂足為點.設直線與橢圓的另一個交點為.則的值是________________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在銳角中,角A,B,C所對的邊分別為a,b,c.已知.(1)求的值;(2)當,且時,求的面積.18.(12分)已知圓M:及定點,點A是圓M上的動點,點B在上,點G在上,且滿足,,點G的軌跡為曲線C.(1)求曲線C的方程;(2)設斜率為k的動直線l與曲線C有且只有一個公共點,與直線和分別交于P、Q兩點.當時,求(O為坐標原點)面積的取值范圍.19.(12分)對于非負整數集合(非空),若對任意,或者,或者,則稱為一個好集合.以下記為的元素個數.(1)給出所有的元素均小于的好集合.(給出結論即可)(2)求出所有滿足的好集合.(同時說明理由)(3)若好集合滿足,求證:中存在元素,使得中所有元素均為的整數倍.20.(12分)已知橢圓,直線不過原點且不平行于坐標軸,與有兩個交點,,線段的中點為.(Ⅰ)證明:直線的斜率與的斜率的乘積為定值;(Ⅱ)若過點,延長線段與交于點,四邊形能否為平行四邊形?若能,求此時的斜率,若不能,說明理由.21.(12分)設(1)證明:當時,;(2)當時,求整數的最大值.(參考數據:,)22.(10分)已知函數,其中.(1)①求函數的單調區間;②若滿足,且.求證:.(2)函數.若對任意,都有,求的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
利用等差數列的性質求出的值,然后利用等差數列求和公式以及等差中項的性質可求出的值.【詳解】由等差數列的性質可得,.故選:B.【點睛】本題考查等差數列基本性質的應用,同時也考查了等差數列求和,考查計算能力,屬于基礎題.2、A【解析】
利用已知條件畫出幾何體的直觀圖,然后求解幾何體的體積.【詳解】幾何體的三視圖的直觀圖如圖所示,則該幾何體的體積為:.故選:.【點睛】本題考查三視圖求解幾何體的體積,判斷幾何體的形狀是解題的關鍵.3、C【解析】
計算,由共軛復數的概念解得即可.【詳解】,又由共軛復數概念得:,.故選:C【點睛】本題主要考查了復數的運算,共軛復數的概念.4、C【解析】
根據,再根據二項式的通項公式進行求解即可.【詳解】因為,所以二項式的展開式的通項公式為:,令,所以,因此有.故選:C【點睛】本題考查了二項式定理的應用,考查了二項式展開式通項公式的應用,考查了數學運算能力5、D【解析】
原問題轉化為有四個不同的實根,換元處理令t,對g(t)進行零點個數討論.【詳解】由題意,a>2,令t,則f(x)=a????.記g(t).當t<2時,g(t)=2ln(﹣t)(t)單調遞減,且g(﹣2)=2,又g(2)=2,∴只需g(t)=2在(2,+∞)上有兩個不等于2的不等根.則?,記h(t)(t>2且t≠2),則h′(t).令φ(t),則φ′(t)2.∵φ(2)=2,∴φ(t)在(2,2)大于2,在(2,+∞)上小于2.∴h′(t)在(2,2)上大于2,在(2,+∞)上小于2,則h(t)在(2,2)上單調遞增,在(2,+∞)上單調遞減.由,可得,即a<2.∴實數a的取值范圍是(2,2).故選:D.【點睛】此題考查方程的根與函數零點問題,關鍵在于等價轉化,將問題轉化為通過導函數討論函數單調性解決問題.6、D【解析】
根據以直角邊為直徑的半圓的面積之比求得,即的值,由此求得和的值,進而求得所求表達式的值.【詳解】由于直角邊為直徑的半圓的面積之比為,所以,即,所以,所以.故選:D【點睛】本小題主要考查同角三角函數的基本關系式,考查二倍角公式,屬于基礎題.7、C【解析】
分兩類進行討論:物理和歷史只選一門;物理和歷史都選,分別求出兩種情況對應的組合數,即可求出結果.【詳解】若一名學生只選物理和歷史中的一門,則有種組合;若一名學生物理和歷史都選,則有種組合;因此共有種組合.故選C【點睛】本題主要考查兩個計數原理,熟記其計數原理的概念,即可求出結果,屬于常考題型.8、D【解析】
推導出函數的圖象關于直線對稱,由題意得出,進而可求得實數的值,并對的值進行檢驗,即可得出結果.【詳解】,則,,,所以,函數的圖象關于直線對稱.若函數的零點不為,則該函數的零點必成對出現,不合題意.所以,,即,解得或.①當時,令,得,作出函數與函數的圖象如下圖所示:此時,函數與函數的圖象有三個交點,不合乎題意;②當時,,,當且僅當時,等號成立,則函數有且只有一個零點.綜上所述,.故選:D.【點睛】本題考查利用函數的零點個數求參數,考查函數圖象對稱性的應用,解答的關鍵就是推導出,在求出參數后要對參數的值進行檢驗,考查分析問題和解決問題的能力,屬于中等題.9、C【解析】
根據含有個元素的集合,有個子集,有個真子集,計算可得;【詳解】解:集合含有個元素,則集合的真子集有(個),故選:C【點睛】考查列舉法的定義,集合元素的概念,以及真子集的概念,對于含有個元素的集合,有個子集,有個真子集,屬于基礎題.10、B【解析】
展開式中的每一項是由每個括號中各出一項組成的,所以可分成三種情況.【詳解】展開式中的項為常數項,有3種情況:(1)5個括號都出1,即;(2)兩個括號出,兩個括號出,一個括號出1,即;(3)一個括號出,一個括號出,三個括號出1,即;所以展開項中的常數項為,故選B.【點睛】本題考查二項式定理知識的生成過程,考查定理的本質,即展開式中每一項是由每個括號各出一項相乘組合而成的.11、D【解析】
作出四個函數的圖象及給出的四個點,觀察這四個點在靠近哪個曲線.【詳解】如圖,作出A,B,C,D中四個函數圖象,同時描出題中的四個點,它們在曲線的兩側,與其他三個曲線都離得很遠,因此D是正確選項,故選:D.【點睛】本題考查回歸分析,擬合曲線包含或靠近樣本數據的點越多,說明擬合效果好.12、C【解析】試題分析:通過對以下四個四棱錐的三視圖對照可知,只有選項C是符合要求的.考點:三視圖二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
利用導數的幾何意義可求得函數在處的切線,再根據切線與圓存在公共點,利用圓心到直線的距離滿足的條件列式求解即可.【詳解】解:由條件得到又所以函數在處的切線為,即圓方程整理可得:即有圓心且所以圓心到直線的距離,即.解得或,故答案為:.【點睛】本題主要考查了導數的幾何意義求解切線方程的問題,同時也考查了根據直線與圓的位置關系求解參數范圍的問題,屬于基礎題.14、15【解析】
由題得,,令,解得,代入可得展開式中含x6項的系數.【詳解】由題得,,令,解得,所以二項式的展開式中項的系數為.故答案為:15【點睛】本題主要考查了二項式定理的應用,考查了利用通項公式去求展開式中某項的系數問題.15、必要不充分【解析】
先求解直線l1與直線l2平行的等價條件,然后進行判斷.【詳解】“直線l1:與直線l2:平行”等價于a=±2,故“直線l1:與直線l2:平行”是“a=2”的必要不充分條件.故答案為:必要不充分.【點睛】本題主要考查充分必要條件的判定,把已知條件進行等價轉化是求解這類問題的關鍵,側重考查邏輯推理的核心素養.16、【解析】
作出圖形,設點,則、,設點,利用點差法得出,利用斜率公式得出,進而可得出,可得出,由此可求得的值.【詳解】設點,則、,設點,則,兩式相減得,即,即,由斜率公式得,,,故,因此,.故答案為:.【點睛】本題考查橢圓中角的余弦值的求解,涉及了點差法與斜率公式的應用,考查計算能力,屬于中等題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】
(1)利用二倍角公式求解即可,注意隱含條件.(2)利用(1)中的結論,結合正弦定理和同角三角函數的關系易得的值,又由求出的值,最后由正弦定理求出的值,根據三角形的面積公式即可計算得出.【詳解】(1)由已知可得,所以,因為在銳角中,,所以(2)因為,所以,因為是銳角三角形,所以,所以.由正弦定理可得:,所以,所以【點睛】此類問題是高考的常考題型,主要考查了正弦定理、三角函數以及三角恒等變換等知識,同時考查了學生的基本運算能力和利用三角公式進行恒等變換的技能,屬于中檔題.18、(1);(2).【解析】
(1)根據題意得到GB是線段的中垂線,從而為定值,根據橢圓定義可知點G的軌跡是以M,N為焦點的橢圓,即可求出曲線C的方程;(2)聯立直線方程和橢圓方程,表示處的面積代入韋達定理化簡即可求范圍.【詳解】(1)為的中點,且是線段的中垂線,,又,∴點G的軌跡是以M,N為焦點的橢圓,設橢圓方程為(),則,,,所以曲線C的方程為.(2)設直線l:(),由消去y,可得.因為直線l總與橢圓C有且只有一個公共點,所以,.①又由可得;同理可得.由原點O到直線的距離為和,可得.②將①代入②得,當時,,綜上,面積的取值范圍是.【點睛】此題考查了軌跡和直線與曲線相交問題,軌跡通過已知條件找到幾何關系從而判斷軌跡,直線與曲線相交一般聯立設而不求韋達定理進行求解即可,屬于一般性題目.19、(1),,,.(2);證明見解析.(3)證明見解析.【解析】
(1)根據好集合的定義列舉即可得到結果;(2)設,其中,由知;由可知或,分別討論兩種情況可的結果;(3)記,則,設,由歸納推理可求得,從而得到,從而得到,可知存在元素滿足題意.【詳解】(1),,,.(2)設,其中,則由題意:,故,即,考慮,可知:,或,若,則考慮,,,則,,但此時,,不滿足題意;若,此時,滿足題意,,其中為相異正整數.(3)記,則,首先,,設,其中,分別考慮和其他任一元素,由題意可得:也在中,而,,,對于,考慮,,其和大于,故其差,特別的,,,由,且,,以此類推:,,此時,故中存在元素,使得中所有元素均為的整數倍.【點睛】本題考查集合中的新定義問題的求解,關鍵是明確已知中所給的新定義的具體要求,根據集合元素的要求進行推理說明,對于學生分析和解決問題能力、邏輯推理能力有較高的要求,屬于較難題.20、(Ⅰ)詳見解析;(Ⅱ)能,或.【解析】試題分析:(1)設直線,直線方程與橢圓方程聯立,根據韋達定理求根與系數的關系,并表示直線的斜率,再表示;(2)第一步由(Ⅰ)得的方程為.設點的橫坐標為,直線與橢圓方程聯立求點的坐標,第二步再整理點的坐標,如果能構成平行四邊形,只需,如果有值,并且滿足,的條件就說明存在,否則不存在.試題解析:解:(1)設直線,,,.∴由得,∴,.∴直線的斜率,即.即直線的斜率與的斜率的乘積為定值.(2)四邊形能為平行四邊形.∵直線過點,∴不過原點且與有兩個交點的充要條件是,由(Ⅰ)得的方程為.設點的橫坐標為.∴由得,即將點的坐標代入直線的方程得,因此.四邊形為平行四邊形當且僅當線段與線段互相平分,即∴.解得,.∵,,,∴當的斜率為或時,四邊形為平行四邊形.考點:直線與橢圓的位置關系的綜合應用【一題多解】第一問涉及中點弦,當直線與圓錐曲線相交時,點是弦的中點,(1)知道中點坐標,求直線的斜率,或知道直線斜率求中點坐標的關系,或知道求直線斜率與直線斜率的關系時,也可以選擇點差法,設,,代入橢圓方程,兩式相減,化簡為,兩邊同時除以得,而,,即得到結果,(2)對于用坐標法來解決幾何性質問題,那么就要求首先看出幾何關系滿足什么條件,其次用坐標表示這些幾何關系,本題的關鍵就是如果是平行四邊形那么對角線互相平分,即,分別用方程聯立求兩個坐標,最后求斜率.21、(1)證明見解析;(2).【解析】
(1)將代入函數解析式可得,構造函數,求得并令,由導函數符號判斷函數單調性并求得最大值,由即可證明恒成立,即不等式得證.(2)對函數求導,變形后討論當時的函數單調情況:當時,可知滿足題意;將不等式化簡后構造函數,利用導函數求得極值點與函數的單調性,從而求得最小值為,分別依次代入檢驗的符號,即可確定整數的最大值;當時不滿足題意,因為求整數的最大值,所以時無需再討論.【詳解】(1)證明:當時代入可得,令,,則,令解得,當時,所以在單調遞增,當時,所以在單調遞減,所以,則,即
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 中建施工方案流程詳解
- 項目管理中的可持續發展理念實踐試題及答案
- 2025年注冊會計師備考時間分配試題及答案
- 財務報表披露中的常見合規問題試題及答案
- 2024項目管理資格的考試重點與趨勢分析試題及答案
- 2024年項目管理復習策略試題及答案
- 礦區塑膠跑道施工方案
- 證券從業資格證考試監測試題及答案
- 2024項目管理考試復習試題及答案
- 2025年注會備考的自我監督與激勵機制試題及答案
- 美國加征關稅從多個角度全方位解讀關稅課件
- 期中(試題)-2024-2025學年人教精通版(2024)英語三年級下冊
- 定額〔2025〕1號文-關于發布2018版電力建設工程概預算定額2024年度價格水平調整的通知
- 《思想政治教育方法論》考研(第3版)鄭永廷配套考試題庫及答案【含名校真題、典型題】
- 一種基于STM32的智能門鎖系統的設計-畢業論文
- 藍牙音響成品檢驗規范
- 材料5:個人征信系統機構接入和接口驗收工作流程
- 項目選址比選方案分析參考范本
- 中機2015~2016年消防系統維保養護年度總結報告
- 預制混凝土襯砌管片生產工藝技術規程doc
- 極域電子教室解決方案
評論
0/150
提交評論