




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
四川省南充市閬中中學2025屆高一數學第二學期期末質量跟蹤監視模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設為等差數列的前n項和,若,則使成立的最小正整數n為()A.6 B.7 C.8 D.92.素數指整數在一個大于1的自然數中,除了1和此整數自身外,不能被其他自然數整除的數。我國數學家陳景潤在哥德巴赫猜想的研究中取得了世界領先的成果。哥德巴赫猜想是“每個大于2的偶數可以表示為兩個素數的和”,如。在不超過15的素數中,隨機選取兩個不同的數,其和小于18的概率是()A. B. C. D.3.三棱錐則二面角的大小為()A. B. C. D.4.△ABC的內角A、B、C的對邊分別為a、b、c.已知,a=2,c=,則C=A. B. C. D.5.設是空間四個不同的點,在下列命題中,不正確的是A.若與共面,則與共面B.若與是異面直線,則與是異面直線C.若==,則D.若==,則=6.已知向量,,,且,則()A. B. C. D.7.設,則使函數的定義域是,且為偶函數的所有的值是()A.0,2 B.0,-2 C. D.28.若直線:與直線:垂直,則實數().A. B. C.2 D.或29.△ABC中,三個內角A,B,C所對應的邊分別為a,b,c,若c=,b=1,∠B=,則△ABC的形狀為()A.等腰直角三角形 B.直角三角形C.等邊三角形 D.等腰三角形或直角三角形10.如圖所示,4個散點圖中,不適合用線性回歸模型擬合其中兩個變量的是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.四棱柱中,平面ABCD,平面ABCD是菱形,,,,E是BC的中點,則點C到平面的距離等于________.12.不等式的解集為_________.13.在中,若,則____________.14.已知扇形的半徑為6,圓心角為,則扇形的弧長為______.15.若關于的不等式有解,則實數的取值范圍為________.16.在平面直角坐標系中,點,,若直線上存在點使得,則實數的取值范圍是_____.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.某種植園在芒果臨近成熟時,隨機從一些芒果樹上摘下100個芒果,其質量分別在,,,,,(單位:克)中,經統計的頻率分布直方圖如圖所示.(1)估計這組數據的平均數(同一組中的數據以這組數據所在區間中點的值作代表);(2)現按分層抽樣從質量為[200,250),[250,300)的芒果中隨機抽取5個,再從這5個中隨機抽取2個,求這2個芒果都來自同一個質量區間的概率;(3)某經銷商來收購芒果,同一組中的數據以這組數據所在區間中點的值作代表,用樣本估計總體,該種植園中還未摘下的芒果大約還有10000個,經銷商提出以下兩種收購方案:方案①:所有芒果以9元/千克收購;方案②:對質量低于250克的芒果以2元/個收購,對質量高于或等于250克的芒果以3元/個收購.通過計算確定種植園選擇哪種方案獲利更多.參考數據:.18.在銳角中,角的對邊分別是,且.(1)求角的大小;(2)若,求面積的最大值.19.已知向量,滿足:,,.(Ⅰ)求與的夾角;(Ⅱ)求.20.如圖,在幾何體P﹣ABCD中,平面ABCD⊥平面PAB,四邊形ABCD為矩形,△PAB為正三角形,若AB=2,AD=1,E,F分別為AC,BP中點.(1)求證:EF∥平面PCD;(2)求直線DP與平面ABCD所成角的正弦值.21.如圖,在半徑為、圓心角為的扇形的弧上任取一點,作扇形的內接矩形,使點在上,點在上,設矩形的面積為,(1)按下列要求寫出函數的關系式:①設,將表示成的函數關系式;②設,將表示成的函數關系式,(2)請你選用(1)中的一個函數關系式,求出的最大值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】
利用等差數列下標和的性質可確定,,,由此可確定最小正整數.【詳解】且,使得成立的最小正整數故選:【點睛】本題考查等差數列性質的應用問題,關鍵是能夠熟練應用等差數列下標和性質化簡前項和公式.2、B【解析】
找出不超過15的素數,從其中任取2個共有多少種取法,找到取出的兩個和小于18的個數,根據古典概型求解即可.【詳解】不超過15的素數為,共6個,任取2個分別為,,,,,,,,,,,,,,,共15個基本事件,其中兩個和小于18的共有11個基本事件,根據古典概型概率公式知.【點睛】本題主要考查了古典概型,基本事件,屬于中檔題.3、B【解析】
P在底面的射影是斜邊的中點,設AB中點為D過D作DE垂直AC,垂足為E,則∠PED即為二面角P﹣AC﹣B的平面角,在直角三角形PED中求出此角即可.【詳解】因為AB=10,BC=8,CA=6所以底面為直角三角形又因為PA=PB=PC所以P在底面的射影為直角三角形ABC的外心,為AB中點.設AB中點為D過D作DE垂直AC,垂足為E,所以DE平行BC,且DEBC=4,所以∠PED即為二面角P﹣AC﹣B的平面角.因為PD為三角形PAB的中線,所以可算出PD=4所以tan∠PED所以∠PED=60°即二面角P﹣AC﹣B的大小為60°故答案為60°.【點睛】本題考查的知識點是二面角的平面角及求法,確定出二面角的平面角是解答本題的關鍵.4、B【解析】
試題分析:根據誘導公式和兩角和的正弦公式以及正弦定理計算即可詳解:sinB=sin(A+C)=sinAcosC+cosAsinC,∵sinB+sinA(sinC﹣cosC)=0,∴sinAcosC+cosAsinC+sinAsinC﹣sinAcosC=0,∴cosAsinC+sinAsinC=0,∵sinC≠0,∴cosA=﹣sinA,∴tanA=﹣1,∵<A<π,∴A=,由正弦定理可得,∵a=2,c=,∴sinC==,∵a>c,∴C=,故選B.點睛:本題主要考查正弦定理及余弦定理的應用,屬于難題.在解與三角形有關的問題時,正弦定理、余弦定理是兩個主要依據.解三角形時,有時可用正弦定理,有時也可用余弦定理,應注意用哪一個定理更方便、簡捷一般來說,當條件中同時出現及、時,往往用余弦定理,而題設中如果邊和正弦、余弦函數交叉出現時,往往運用正弦定理將邊化為正弦函數再結合和、差、倍角的正余弦公式進行解答.5、D【解析】
由空間四點共面的判斷可是A,B正確,;C,D畫出圖形,可以判定AD與BC不一定相等,證明BC與AD一定垂直.【詳解】對于選項A,若與共面,則與共面,正確;對于選項B,若與是異面直線,則四點不共面,則與是異面直線,正確;如圖,空間四邊形ABCD中,AB=AC,DB=DC,則AD與BC不一定相等,∴D錯誤;對于C,當四點共面時顯然成立,當四點不共面時,取BC的中點M,連接AM、DM,AM⊥BC,DM⊥BC,∴BC⊥平面ADM,∴BC⊥AD,∴C正確;【點睛】本題通過命題真假的判定,考查了空間中的直線共面與異面以及垂直問題,是綜合題.6、C【解析】
由可得,代入求解可得,則,進而利用誘導公式求解即可【詳解】由可得,即,所以,因為,所以,則,故選:C【點睛】本題考查垂直向量的應用,考查里利用誘導公式求三角函數值7、D【解析】
根據冪函數的性質,結合題中條件,即可得出結果.【詳解】若函數的定義域是,則;又函數為偶函數,所以只能使偶數;因為,所以能取的值為2.故選D【點睛】本題主要考查冪函數性質的應用,熟記冪函數的性質即可,屬于常考題型.8、A【解析】試題分析:直線:與直線:垂直,則,.考點:直線與直線垂直的判定.9、D【解析】試題分析:在中,由正弦定理可得,因為,所以或,所以或,所以的形狀一定為等腰三角形或直角三角形,故選D.考點:正弦定理.10、A【解析】
根據線性回歸模型建立方法,分析選項,找出散點比較分散且無任何規律的選項可得答案.【詳解】根據題意,適合用線性回歸擬合其中兩個變量的散點圖必須散點分布比較集中,且大體接近某一條直線,分析選項可得A選項的散點圖雜亂無章,最不符合條件.故選A【點睛】本題考查了統計案例散點圖,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
利用等體法即可求解.【詳解】如圖,由ABCD是菱形,,,E是BC的中點,所以,又平面ABCD,所以平面ABCD,即,又,則平面,由平面,所以,所以,設點C到平面的距離為,由即,即,所以.故答案為:【點睛】本題考查了等體法求點到面的距離,同時考查了線面垂直的判定定理,屬于基礎題.12、【解析】
利用兩個數的商是正數等價于兩個數同號;將已知的分式不等式轉化為整式不等式,求出解集.【詳解】同解于解得或故答案為:【點睛】本題考查解分式不等式,利用等價變形轉化為整式不等式是解題的關鍵.13、2【解析】
根據正弦定理角化邊可得答案.【詳解】由正弦定理可得.故答案為:2【點睛】本題考查了正弦定理角化邊,屬于基礎題.14、【解析】
先將角度化為弧度,再根據弧長公式求解.【詳解】因為圓心角,所以弧長.故答案為:【點睛】本題考查了角度和弧度的互化以及弧長公式的應用問題,屬于基礎題.15、【解析】
利用判別式可求實數的取值范圍.【詳解】不等式有解等價于有解,所以,故或,填.【點睛】本題考查一元二次不等式有解問題,屬于基礎題.16、.【解析】
設由,求出點軌跡方程,可判斷其軌跡為圓,點又在直線,轉化為直線與圓有公共點,只需圓心到直線的距離小于半徑,得到關于的不等式,求解,即可得出結論.【詳解】設,,,,整理得,又點在直線,直線與圓共公共點,圓心到直線的距離,即.故答案為:.【點睛】本題考查求曲線的軌跡方程,考查直線與圓的位置關系,屬于中檔題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)255;(2);(3)選擇方案②獲利多【解析】
1)由頻率分布直方圖能求出這組數據的平均數.(2)利用分層抽樣從這兩個范圍內抽取5個芒果,則質量在[200,250)內的芒果有2個,記為a1,a2,質量在[250,300)內的芒果有3個,記為b1,b2,b3,從抽取的5個芒果中抽取2個,利用列舉法能求出這2個芒果都來自同一個質量區間的概率.(3)方案①收入22950元,方案②:低于250克的芒果的收入為8400元,不低于250克的芒果的收入為17400元,由此能求出選擇方案②獲利多.【詳解】(1)由頻率分布直方圖知,各區間頻率為0.07,0.15,0.20,0.30,0.25,0.03這組數據的平均數.(2)利用分層抽樣從這兩個范圍內抽取5個芒果,則質量在[200,250)內的芒果有2個,記為,,質量在[250,300)內的芒果有3個,記為,,;從抽取的5個芒果中抽取2個共有10種不同情況:,,,,,,,,,.記事件為“這2個芒果都來自同一個質量區間”,則有4種不同組合:,,,從而,故這2個芒果都來自同一個質量區間的概率為.(3)方案①收入:(元);方案②:低于250克的芒果收入為(元);不低于250克的芒果收入為(元);故方案②的收入為(元).由于,所以選擇方案②獲利多.【點睛】本題考查平均數、概率的求法,考查頻率分布直方圖、古典概型等基礎知識,考查運算求解能力,考查函數與方程思想,是中檔題.18、(1);(2)【解析】
(1)利用正弦定理邊轉化為角,逐步化簡,即可得到本題答案;(2)由余弦定理得,,綜合,得,從而可得到本題答案.【詳解】(1)因為,所以,即,所以,又,所以,由為銳角三角形,則;(2)因為,所以,所以,即(當且僅當時取等號),所以.【點睛】本題主要考查利用正弦定理邊角轉化求角,以及余弦定理和基本不等式綜合運用求三角形面積的最大值.19、(Ⅰ)(Ⅱ)【解析】
(I)利用向量數量積的運算,化簡,得到,由此求得的大小.(II)先利用向量的數量積運算,求得的值,由此求得的值.【詳解】解:(Ⅰ)因為,所以.所以.因為,所以.(Ⅱ)因為,由已知,,所以.所以.【點睛】本小題主要考查向量數量積運算,考查向量夾角的計算,考查向量模的求法,屬于基礎題.20、(1)見證明;(2)【解析】
(1)根據EF是△BDP的中位線可知EF∥DP,即可利用線線平行得出線面平行;(2)取AB中點O,連接PO,DO,可證明∠PDO為DP與平面ABCD所成角,在Rt△DOP中求解即可.【詳解】(1)因為E為AC中點,所以DB與AC交于點E.因為E,F分
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 國際貿易代理基礎知識考核試卷
- 珠寶首飾表面處理技術考核試卷
- 玻璃制品耐候性測試與優化考核試卷
- 稻谷種植農業氣象服務需求與供給考核試卷
- 新材料新技術引領可持續發展的新方向考核試卷
- 果蔬汁飲料的企業文化與品牌建設考核試卷
- 紡織企業成本分析與控制考核試卷
- 勞務派遣企業招聘渠道分析與優化考核試卷
- 濟南大學《模特經紀管理》2023-2024學年第二學期期末試卷
- 江西服裝學院《嬰幼兒護理與急救》2023-2024學年第二學期期末試卷
- 大學生創業計劃書-校園跑腿PPT
- 2023年湖南省中學生生物學奧林匹克競賽選拔賽試題及答案
- 升壓站建筑工程施工作業指導書
- GB/T 27548-2011移動式升降工作平臺安全規則、檢查、維護和操作
- GB/T 24825-2009LED模塊用直流或交流電子控制裝置性能要求
- 2023年湖南公務員面試真題及解析匯總
- 部編人教版語文九年級下冊《18天下第一樓》課件
- 2023年東莞市網格員招聘筆試題庫及答案解析
- 老舊小區改造要素設計課件
- 社交網絡分析
- 物業綠化養護方案綠化管理方案
評論
0/150
提交評論