




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年高三上數學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,內接于圓,是圓的直徑,,則三棱錐體積的最大值為()A. B. C. D.2.已知圓與拋物線的準線相切,則的值為()A.1 B.2 C. D.43.中國的國旗和國徽上都有五角星,正五角星與黃金分割有著密切的聯系,在如圖所示的正五角星中,以、、、、為頂點的多邊形為正五邊形,且,則()A. B. C. D.4.已知平面向量滿足與的夾角為,且,則實數的值為()A. B. C. D.5.在中,內角的平分線交邊于點,,,,則的面積是()A. B. C. D.6.框圖與程序是解決數學問題的重要手段,實際生活中的一些問題在抽象為數學模型之后,可以制作框圖,編寫程序,得到解決,例如,為了計算一組數據的方差,設計了如圖所示的程序框圖,其中輸入,,,,,,,則圖中空白框中應填入()A., B. C., D.,7.一個四面體所有棱長都是4,四個頂點在同一個球上,則球的表面積為()A. B. C. D.8.“完全數”是一些特殊的自然數,它所有的真因子(即除了自身以外的約數)的和恰好等于它本身.古希臘數學家畢達哥拉斯公元前六世紀發現了第一、二個“完全數”6和28,進一步研究發現后續三個完全數”分別為496,8128,33550336,現將這五個“完全數”隨機分為兩組,一組2個,另一組3個,則6和28不在同一組的概率為()A. B. C. D.9.若復數為虛數單位在復平面內所對應的點在虛軸上,則實數a為()A. B.2 C. D.10.設數列是等差數列,,.則這個數列的前7項和等于()A.12 B.21 C.24 D.3611.已知集合,,若,則()A.或 B.或 C.或 D.或12.已知定義在上的偶函數滿足,且在區間上是減函數,令,則的大小關系為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.“”是“”的__________條件.(填寫“充分必要”、“充分不必要”、“必要不充分”、“既不充分也不必要”之一)14.在中,角的平分線交于,,,則面積的最大值為__________.15.如圖,在△ABC中,E為邊AC上一點,且,P為BE上一點,且滿足,則的最小值為______.16.學校藝術節對同一類的四項參賽作品,只評一項一等獎,在評獎揭曉前,甲、乙、丙、丁四位同學對這四項參賽作品預測如下:甲說:“作品獲得一等獎”;乙說:“作品獲得一等獎”;丙說:“,兩項作品未獲得一等獎”;丁說:“是或作品獲得一等獎”,若這四位同學中只有兩位說的話是對的,則獲得一等獎的作品是___.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的左,右焦點分別為,直線與橢圓相交于兩點;當直線經過橢圓的下頂點和右焦點時,的周長為,且與橢圓的另一個交點的橫坐標為(1)求橢圓的方程;(2)點為內一點,為坐標原點,滿足,若點恰好在圓上,求實數的取值范圍.18.(12分)已知動圓恒過點,且與直線相切.(1)求圓心的軌跡的方程;(2)設是軌跡上橫坐標為2的點,的平行線交軌跡于,兩點,交軌跡在處的切線于點,問:是否存在實常數使,若存在,求出的值;若不存在,說明理由.19.(12分)已知六面體如圖所示,平面,,,,,,是棱上的點,且滿足.(1)求證:直線平面;(2)求二面角的正弦值.20.(12分)如圖,在三棱柱中,平面ABC.(1)證明:平面平面(2)求二面角的余弦值.21.(12分)已知.(1)求不等式的解集;(2)若存在,使得成立,求實數的取值范圍22.(10分)已知函數.(1)若,求的取值范圍;(2)若,對,不等式恒成立,求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
根據已知證明平面,只要設,則,從而可得體積,利用基本不等式可得最大值.【詳解】因為,所以四邊形為平行四邊形.又因為平面,平面,所以平面,所以平面.在直角三角形中,,設,則,所以,所以.又因為,當且僅當,即時等號成立,所以.故選:B.【點睛】本題考查求棱錐體積的最大值.解題方法是:首先證明線面垂直同,得棱錐的高,然后設出底面三角形一邊長為,用建立體積與邊長的函數關系,由基本不等式得最值,或由函數的性質得最值.2、B【解析】
因為圓與拋物線的準線相切,則圓心為(3,0),半徑為4,根據相切可知,圓心到直線的距離等于半徑,可知的值為2,選B.【詳解】請在此輸入詳解!3、A【解析】
利用平面向量的概念、平面向量的加法、減法、數乘運算的幾何意義,便可解決問題.【詳解】解:.故選:A【點睛】本題以正五角星為載體,考查平面向量的概念及運算法則等基礎知識,考查運算求解能力,考查化歸與轉化思想,屬于基礎題.4、D【解析】
由已知可得,結合向量數量積的運算律,建立方程,求解即可.【詳解】依題意得由,得即,解得.故選:.【點睛】本題考查向量的數量積運算,向量垂直的應用,考查計算求解能力,屬于基礎題.5、B【解析】
利用正弦定理求出,可得出,然后利用余弦定理求出,進而求出,然后利用三角形的面積公式可計算出的面積.【詳解】為的角平分線,則.,則,,在中,由正弦定理得,即,①在中,由正弦定理得,即,②①②得,解得,,由余弦定理得,,因此,的面積為.故選:B.【點睛】本題考查三角形面積的計算,涉及正弦定理和余弦定理以及三角形面積公式的應用,考查計算能力,屬于中等題.6、A【解析】
依題意問題是,然后按直到型驗證即可.【詳解】根據題意為了計算7個數的方差,即輸出的,觀察程序框圖可知,應填入,,故選:A.【點睛】本題考查算法與程序框圖,考查推理論證能力以及轉化與化歸思想,屬于基礎題.7、A【解析】
將正四面體補成正方體,通過正方體的對角線與球的半徑關系,求解即可.【詳解】解:如圖,將正四面體補形成一個正方體,正四面體的外接球與正方體的外接球相同,∵四面體所有棱長都是4,∴正方體的棱長為,設球的半徑為,則,解得,所以,故選:A.【點睛】本題主要考查多面體外接球問題,解決本題的關鍵在于,巧妙構造正方體,利用正方體的外接球的直徑為正方體的對角線,從而將問題巧妙轉化,屬于中檔題.8、C【解析】
先求出五個“完全數”隨機分為兩組,一組2個,另一組3個的基本事件總數為,再求出6和28恰好在同一組包含的基本事件個數,根據即可求出6和28不在同一組的概率.【詳解】解:根據題意,將五個“完全數”隨機分為兩組,一組2個,另一組3個,則基本事件總數為,則6和28恰好在同一組包含的基本事件個數,∴6和28不在同一組的概率.故選:C.【點睛】本題考查古典概型的概率的求法,涉及實際問題中組合數的應用.9、D【解析】
利用復數代數形式的乘除運算化簡,再由實部為求得值.【詳解】解:在復平面內所對應的點在虛軸上,,即.故選D.【點睛】本題考查復數代數形式的乘除運算,考查復數的代數表示法及其幾何意義,是基礎題.10、B【解析】
根據等差數列的性質可得,由等差數列求和公式可得結果.【詳解】因為數列是等差數列,,所以,即,又,所以,,故故選:B【點睛】本題主要考查了等差數列的通項公式,性質,等差數列的和,屬于中檔題.11、B【解析】
因為,所以,所以或.若,則,滿足.若,解得或.若,則,滿足.若,顯然不成立,綜上或,選B.12、C【解析】
可設,根據在上為偶函數及便可得到:,可設,,且,根據在上是減函數便可得出,從而得出在上單調遞增,再根據對數的運算得到、、的大小關系,從而得到的大小關系.【詳解】解:因為,即,又,設,根據條件,,;若,,且,則:;在上是減函數;;;在上是增函數;所以,故選:C【點睛】考查偶函數的定義,減函數及增函數的定義,根據單調性定義判斷一個函數單調性的方法和過程:設,通過條件比較與,函數的單調性的應用,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、充分不必要【解析】
由余弦的二倍角公式可得,即或,即可判斷命題的關系.【詳解】由,所以或,所以“”是“”的充分不必要條件.故答案為:充分不必要【點睛】本題考查命題的充分條件與必要條件的判斷,考查余弦的二倍角公式的應用.14、15【解析】
由角平分線定理得,利用余弦定理和三角形面積公式,借助三角恒等變化求出面積的最大值.【詳解】畫出圖形:因為,,由角平分線定理得,設,則由余弦定理得:即當且僅當,即時取等號所以面積的最大值為15故答案為:15【點睛】此題考查解三角形面積的最值問題,通過三角恒等變形后利用均值不等式處理,屬于一般性題目.15、【解析】試題分析:根據題意有,因為三點共線,所以有,從而有,所以的最小值是.考點:向量的運算,基本不等式.【方法點睛】該題考查的是有關應用基本不等式求最值的問題,屬于中檔題目,在解題的過程中,關鍵步驟在于對題中條件的轉化,根據三點共線,結合向量的性質可知,從而等價于已知兩個正數的整式形式和為定值,求分式形式和的最值的問題,兩式乘積,最后應用基本不等式求得結果,最后再加,得出最后的答案.16、C【解析】
假設獲得一等獎的作品,判斷四位同學說對的人數.【詳解】分別獲獎的說對人數如下表:獲獎作品ABCD甲對錯錯錯乙錯錯對錯丙對錯對錯丁對錯錯對說對人數3021故獲得一等獎的作品是C.【點睛】本題考查邏輯推理,常用方法有:1、直接推理結果,2、假設結果檢驗條件.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)或【解析】
(1)由橢圓的定義可知,焦點三角形的周長為,從而求出.寫出直線的方程,與橢圓方程聯立,根據交點橫坐標為,求出和,從而寫出橢圓的方程;(2)設出P、Q兩點坐標,由可知點為的重心,根據重心坐標公式可將點用P、Q兩點坐標來表示.由點在圓O上,知點M的坐標滿足圓O的方程,得式.為直線l與橢圓的兩個交點,用韋達定理表示,將其代入方程,再利用求得的范圍,最終求出實數的取值范圍.【詳解】解:(1)由題意知.,直線的方程為∵直線與橢圓的另一個交點的橫坐標為解得或(舍去),∴橢圓的方程為(2)設.∴點為的重心,∵點在圓上,由得,代入方程,得,即由得解得.或【點睛】本題考查了橢圓的焦點三角形的周長,標準方程的求解,直線與橢圓的位置關系,其中重心坐標公式、韋達定理的應用是關鍵.考查了學生的運算能力,屬于較難的題.18、(1);(2)存在,.【解析】
(1)根據拋物線的定義,容易知其軌跡為拋物線;結合已知點的坐標,即可求得方程;(2)由拋物線方程求得點的坐標,設出直線的方程,利用導數求得點的坐標,聯立直線的方程和拋物線方程,結合韋達定理,求得,進而求得與之間的大小關系,即可求得參數.【詳解】(1)由題意得,點與點的距離始終等于點到直線的距離,由拋物線的定義知圓心的軌跡是以點為焦點,直線為準線的拋物線,則,.∴圓心的軌跡方程為.(2)因為是軌跡上橫坐標為2的點,由(1)不妨取,所以直線的斜率為1.因為,所以設直線的方程為,.由,得,則在點處的切線斜率為2,所以在點處的切線方程為.由得所以,所以.由消去得,由,得且.設,,則,.因為點,,在直線上,所以,,所以,所以.∴故存在,使得.【點睛】本題考查拋物線軌跡方程的求解,以及拋物線中定值問題的求解,涉及導數的幾何意義,屬綜合性中檔題.19、(1)證明見解析(2)【解析】
(1)連接,設,連接.通過證明,證得直線平面.(2)建立空間直角坐標系,利用平面和平面的法向量,計算出二面角的正弦值.【詳解】(1)連接,設,連接,因為,所以,所以,在中,因為,所以,且平面,故平面.(2)因為,,,,,所以,因為,平面,所以平面,所以,,取所在直線為軸,取所在直線為軸,取所在直線為軸,建立如圖所示的空間直角坐標系,由已知可得,,,,所以,因為,所以,所以點的坐標為,所以,,設為平面的法向量,則,令,解得,,所以,即為平面的一個法向量.,同理可求得平面的一個法向量為所以所以二面角的正弦值為【點睛】本小題主要考查線面平行的證明,考查二面角的求法,考查空間想象能力和邏輯推理能力,屬于中檔題.20、(1)證明見解析(2)【解析】
(1)證明平面即平面平面得證;(2)分別以所在直線為x軸,y軸.軸,建立如圖所示的空間直角坐標系C-xyz,再利用向量方法求二面角的余弦值.【詳解】(1)證明:因為平面ABC,所以因為.所以.即又.所以平面因為平面.所以平面平面(2)解:由題可得兩兩垂直,所以分別以所在直線為x軸,y軸.軸,建立如圖所示的空間直角坐標系
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 生管考試題及答案
- 激光制造的升級轉型試題及答案
- 激光設備的市場分析考題試題及答案
- 重要通知2025年計算機二級考試試題及答案
- 排球專業知識試題及答案
- 貴州焊工考試試題及答案
- 西醫臨床職業生涯規劃與考題結合分析試題及答案
- 把握藥師考試的核心內容及技巧試題及答案
- 提升西醫臨床能力的試題及答案
- 計算機二級考試與項目管理相關試題及答案
- 教學課件:《城市地理學》
- YY/T 1833.5-2024人工智能醫療器械質量要求和評價第5部分:預訓練模型
- 博士定向協議書(2篇)
- 2023-2024學年江蘇南京秦淮區七年級下冊語文期中試卷及答案
- 2025年八省聯考新高考數學試卷真題答案詳解(精校打印)
- 酒店行業安全事故舉報與獎勵制度
- DB31-T 1298-2021 既有多層住宅加裝電梯安全技術要求
- 在登高作業時要注意的安全事項
- DB22T 3661-2024省級專項規劃編制實施規范
- 客戶服務與溝通技巧提升考核試卷
- 地下管廊電纜施工方案
評論
0/150
提交評論