湖北省恩施重點達標名校中考數學押題卷及答案解析_第1頁
湖北省恩施重點達標名校中考數學押題卷及答案解析_第2頁
湖北省恩施重點達標名校中考數學押題卷及答案解析_第3頁
湖北省恩施重點達標名校中考數學押題卷及答案解析_第4頁
湖北省恩施重點達標名校中考數學押題卷及答案解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

湖北省恩施重點達標名校中考數學押題卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.已知關于x的方程2x+a-9=0的解是x=2,則a的值為A.2 B.3 C.4 D.52.若關于x的分式方程的解為非負數,則a的取值范圍是()A.a≥1 B.a>1 C.a≥1且a≠4 D.a>1且a≠43.某市2017年實現生產總值達280億的目標,用科學記數法表示“280億”為()A.28×109 B.2.8×108 C.2.8×109 D.2.8×10104.如圖,點D(0,3),O(0,0),C(4,0)在⊙A上,BD是⊙A的一條弦,則cos∠OBD=()A. B. C. D.5.如圖,在平面直角坐標系中,以A(-1,0),B(2,0),C(0,1)為頂點構造平行四邊形,下列各點中不能作為平行四邊形頂點坐標的是()A.(3,1) B.(-4,1) C.(1,-1) D.(-3,1)6.2017年,山西省經濟發展由“疲”轉“興”,經濟增長步入合理區間,各項社會事業發展取得顯著成績,全面建成小康社會邁出嶄新步伐.2018年經濟總體保持平穩,第一季度山西省地區生產總值約為3122億元,比上年增長6.2%.數據3122億元用科學記數法表示為()A.3122×108元 B.3.122×103元C.3122×1011元 D.3.122×1011元7.下列圖形中,既是軸對稱圖形又是中心對稱圖形的是()A.等邊三角形 B.菱形 C.平行四邊形 D.正五邊形8.把多項式x2+ax+b分解因式,得(x+1)(x-3),則a、b的值分別是()A.a=2,b=3 B.a=-2,b=-3C.a=-2,b=3 D.a=2,b=-39.點A為數軸上表示-2的動點,當點A沿數軸移動4個單位長到B時,點B所表示的實數是()A.1B.-6C.2或-6D.不同于以上答案10.二次函數y=a(x﹣m)2﹣n的圖象如圖,則一次函數y=mx+n的圖象經過()A.第一、二、三象限 B.第一、二、四象限C.第二、三、四象限 D.第一、三、四象限二、填空題(共7小題,每小題3分,滿分21分)11.計算(﹣a2b)3=__.12.如圖,已知Rt△ABC中,∠B=90°,∠A=60°,AC=2+4,點M、N分別在線段AC、AB上,將△ANM沿直線MN折疊,使點A的對應點D恰好落在線段BC上,當△DCM為直角三角形時,折痕MN的長為__.13.觀察下列各等式:……根據以上規律可知第11行左起第一個數是__.14.分解因式:m3–m=_____.15.若式子有意義,則x的取值范圍是.16.不等式組的解集為______.17.如圖所示,直線y=x+1(記為l1)與直線y=mx+n(記為l2)相交于點P(a,2),則關于x的不等式x+1≥mx+n的解集為__________.三、解答題(共7小題,滿分69分)18.(10分)如圖,正方形ABCD中,M為BC上一點,F是AM的中點,EF⊥AM,垂足為F,交AD的延長線于點E,交DC于點N.求證:△ABM∽△EFA;若AB=12,BM=5,求DE的長.19.(5分)“C919”大型客機首飛成功,激發了同學們對航空科技的興趣,如圖是某校航模興趣小組獲得的一張數據不完整的航模飛機機翼圖紙,圖中AB∥CD,AM∥BN∥ED,AE⊥DE,請根據圖中數據,求出線段BE和CD的長.(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,結果保留小數點后一位)20.(8分)如圖,方格紙中每個小正方形的邊長都是1個單位長度,在平面直角坐標系中的位置如圖所示.(1)直接寫出關于原點的中心對稱圖形各頂點坐標:________________________;(2)將繞B點逆時針旋轉,畫出旋轉后圖形.求在旋轉過程中所掃過的圖形的面積和點經過的路徑長.21.(10分)如圖,在△ABC中,AB=AC,∠BAC=90°,M是BC的中點,延長AM到點D,AE=AD,∠EAD=90°,CE交AB于點F,CD=DF.(1)∠CAD=______度;(2)求∠CDF的度數;(3)用等式表示線段CD和CE之間的數量關系,并證明.22.(10分)如圖所示,AB是⊙O的一條弦,DB切⊙O于點B,過點D作DC⊥OA于點C,DC與AB相交于點E.(1)求證:DB=DE;(2)若∠BDE=70°,求∠AOB的大小.23.(12分)如圖,在Rt△ABC中,∠C=90°,AC,tanB,半徑為2的⊙C分別交AC,BC于點D、E,得到DE弧.(1)求證:AB為⊙C的切線.(2)求圖中陰影部分的面積.24.(14分)如圖,∠BCD=90°,且BC=DC,直線PQ經過點D.設∠PDC=α(45°<α<135°),BA⊥PQ于點A,將射線CA繞點C按逆時針方向旋轉90°,與直線PQ交于點E.當α=125°時,∠ABC=°;求證:AC=CE;若△ABC的外心在其內部,直接寫出α的取值范圍.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】∵方程2x+a﹣9=0的解是x=2,∴2×2+a﹣9=0,解得a=1.故選D.2、C【解析】試題分析:分式方程去分母轉化為整式方程,表示出整式方程的解,根據解為非負數及分式方程分母不為1求出a的范圍即可.解:去分母得:2(2x﹣a)=x﹣2,解得:x=,由題意得:≥1且≠2,解得:a≥1且a≠4,故選C.點睛:此題考查了分式方程的解,需注意在任何時候都要考慮分母不為1.3、D【解析】

根據科學計數法的定義來表示數字,選出正確答案.【詳解】解:把一個數表示成a(1≤a<10,n為整數)與10的冪相乘的形式,這種記數法叫做科學記數法,280億用科學計數法表示為2.8×1010,所以答案選D.【點睛】本題考查學生對科學計數法的概念的掌握和將數字用科學計數法表示的能力.4、C【解析】

根據圓的弦的性質,連接DC,計算CD的長,再根據直角三角形的三角函數計算即可.【詳解】∵D(0,3),C(4,0),∴OD=3,OC=4,∵∠COD=90°,∴CD==5,連接CD,如圖所示:∵∠OBD=∠OCD,∴cos∠OBD=cos∠OCD=.故選:C.【點睛】本題主要三角函數的計算,結合考查圓性質的計算,關鍵在于利用等量替代原則.5、B【解析】

作出圖形,結合圖形進行分析可得.【詳解】如圖所示:①以AC為對角線,可以畫出?AFCB,F(-3,1);②以AB為對角線,可以畫出?ACBE,E(1,-1);③以BC為對角線,可以畫出?ACDB,D(3,1),故選B.6、D【解析】

可以用排除法求解.【詳解】第一,根據科學記數法的形式可以排除A選項和C選項,B選項明顯不對,所以選D.【點睛】牢記科學記數法的規則是解決這一類題的關鍵.7、B【解析】

在平面內,如果一個圖形沿一條直線對折,直線兩旁的部分能夠完全重合,這樣的圖形叫做軸對稱圖形;在平面內一個圖形繞某個點旋轉180°,如果旋轉前后的圖形能互相重合,那么這個圖形叫做中心對稱圖形,分別判斷各選項即可解答.【詳解】解:A、等邊三角形是軸對稱圖形,不是中心對稱圖形,故此選項錯誤;B、菱形是軸對稱圖形,也是中心對稱圖形,故此選項正確;C、平行四邊形不是軸對稱圖形,是中心對稱圖形,故此選項錯誤;D、正五邊形是軸對稱圖形,不是中心對稱圖形,故此選項錯誤.故選:B.【點睛】本題考查了軸對稱圖形和中心對稱圖形的定義,熟練掌握是解題的關鍵.8、B【解析】分析:根據整式的乘法,先還原多項式,然后對應求出a、b即可.詳解:(x+1)(x-3)=x2-3x+x-3=x2-2x-3所以a=2,b=-3,故選B.點睛:此題主要考查了整式的乘法和因式分解的關系,利用它們之間的互逆運算的關系是解題關鍵.9、C【解析】解:∵點A為數軸上的表示-1的動點,①當點A沿數軸向左移動4個單位長度時,點B所表示的有理數為-1-4=-6;②當點A沿數軸向右移動4個單位長度時,點B所表示的有理數為-1+4=1.故選C.點睛:注意數的大小變化和平移之間的規律:左減右加.與點A的距離為4個單位長度的點B有兩個,一個向左,一個向右.10、A【解析】

由拋物線的頂點坐標在第四象限可得出m>0,n>0,再利用一次函數圖象與系數的關系,即可得出一次函數y=mx+n的圖象經過第一、二、三象限.【詳解】解:觀察函數圖象,可知:m>0,n>0,∴一次函數y=mx+n的圖象經過第一、二、三象限.故選A.【點睛】本題考查了二次函數的圖象以及一次函數圖象與系數的關系,牢記“k>0,b>0?y=kx+b的圖象在一、二、三象限”是解題的關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、?a6b3【解析】

根據積的乘方和冪的乘方法則計算即可.【詳解】原式=(﹣a2b)3=?a6b3,故答案為?a6b3.【點睛】本題考查了積的乘方和冪的乘方,關鍵是掌握運算法則.12、或【解析】分析:依據△DCM為直角三角形,需要分兩種情況進行討論:當∠CDM=90°時,△CDM是直角三角形;當∠CMD=90°時,△CDM是直角三角形,分別依據含30°角的直角三角形的性質以及等腰直角三角形的性質,即可得到折痕MN的長.詳解:分兩種情況:①如圖,當∠CDM=90°時,△CDM是直角三角形,∵在Rt△ABC中,∠B=90°,∠A=60°,AC=2+4,∴∠C=30°,AB=AC=+2,由折疊可得,∠MDN=∠A=60°,∴∠BDN=30°,∴BN=DN=AN,∴BN=AB=,∴AN=2BN=,∵∠DNB=60°,∴∠ANM=∠DNM=60°,∴∠AMN=60°,∴AN=MN=;②如圖,當∠CMD=90°時,△CDM是直角三角形,由題可得,∠CDM=60°,∠A=∠MDN=60°,∴∠BDN=60°,∠BND=30°,∴BD=DN=AN,BN=BD,又∵AB=+2,∴AN=2,BN=,過N作NH⊥AM于H,則∠ANH=30°,∴AH=AN=1,HN=,由折疊可得,∠AMN=∠DMN=45°,∴△MNH是等腰直角三角形,∴HM=HN=,∴MN=,故答案為:或.點睛:本題考查了翻折變換-折疊問題,等腰直角三角形的性質,正確的作出圖形是解題的關鍵.折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等.13、-1.【解析】

觀察規律即可解題.【詳解】解:第一行=12=1,第二行=22=4,第三行=32=9...∴第n行=n2,第11行=112=121,又∵左起第一個數比右側的數大一,∴第11行左起第一個數是-1.【點睛】本題是一道規律題,屬于簡單題,認真審題找到規律是解題關鍵.14、m(m+1)(m-1)【解析】

根據因式分解的一般步驟:一提(公因式)、二套(平方差公式,完全平方公式)、三檢查(徹底分解),可以先提公因式,再利用平方差完成因式分解【詳解】解:故答案為:m(m+1)(m-1).【點睛】本題考查因式分解,掌握因式分解的技巧是解題關鍵.15、且【解析】

∵式子在實數范圍內有意義,∴x+1≥0,且x≠0,解得:x≥-1且x≠0.故答案為x≥-1且x≠0.16、1<x≤1【解析】解不等式x﹣3(x﹣2)<1,得:x>1,解不等式,得:x≤1,所以不等式組解集為:1<x≤1,故答案為1<x≤1.17、x≥1【解析】

把y=2代入y=x+1,得x=1,∴點P的坐標為(1,2),根據圖象可以知道當x≥1時,y=x+1的函數值不小于y=mx+n相應的函數值,因而不等式x+1≥mx+n的解集是:x≥1,故答案為x≥1.【點睛】本題考查了一次函數與不等式(組)的關系及數形結合思想的應用.解決此類問題關鍵是仔細觀察圖形,注意幾個關鍵點(交點、原點等),做到數形結合.三、解答題(共7小題,滿分69分)18、(1)見解析;(2)4.1【解析】

試題分析:(1)由正方形的性質得出AB=AD,∠B=10°,AD∥BC,得出∠AMB=∠EAF,再由∠B=∠AFE,即可得出結論;(2)由勾股定理求出AM,得出AF,由△ABM∽△EFA得出比例式,求出AE,即可得出DE的長.試題解析:(1)∵四邊形ABCD是正方形,∴AB=AD,∠B=10°,AD∥BC,∴∠AMB=∠EAF,又∵EF⊥AM,∴∠AFE=10°,∴∠B=∠AFE,∴△ABM∽△EFA;(2)∵∠B=10°,AB=12,BM=5,∴AM==13,AD=12,∵F是AM的中點,∴AF=AM=6.5,∵△ABM∽△EFA,∴,即,∴AE=16.1,∴DE=AE-AD=4.1.考點:1.相似三角形的判定與性質;2.正方形的性質.19、線段BE的長約等于18.8cm,線段CD的長約等于10.8cm.【解析】試題分析:在Rt△BED中可先求得BE的長,過C作CF⊥AE于點F,則可求得AF的長,從而可求得EF的長,即可求得CD的長.試題解析:∵BN∥ED,∴∠NBD=∠BDE=37°,∵AE⊥DE,∴∠E=90°,∴BE=DE?tan∠BDE≈18.75(cm),如圖,過C作AE的垂線,垂足為F,∵∠FCA=∠CAM=45°,∴AF=FC=25cm,∵CD∥AE,∴四邊形CDEF為矩形,∴CD=EF,∵AE=AB+EB=35.75(cm),∴CD=EF=AE-AF≈10.8(cm),答:線段BE的長約等于18.8cm,線段CD的長約等于10.8cm.【點睛】本題考查了解直角三角形的應用,正確地添加輔助線構造直角三角形是解題的關鍵.20、(1),,;(2)作圖見解析,面積,.【解析】

(1)由在平面直角坐標系中的位置可得A、B、C的坐標,根據關于原點對稱的點的坐標特點即可得、、的坐標;(2)由旋轉的性質可畫出旋轉后圖形,利用面積的和差計算出,然后根據扇形的面積公式求出,利用旋轉過程中掃過的面積進行計算即可.再利用弧長公式求出點C所經過的路徑長.【詳解】解:(1)由在平面直角坐標系中的位置可得:,,,∵與關于原點對稱,∴,,(2)如圖所示,即為所求,∵,,∴,∴,∵,∴在旋轉過程中所掃過的面積:點所經過的路徑:.【點睛】本題考查的是圖形的旋轉、及扇形面積和扇形弧長的計算,根據已知得出對應點位置,作出圖形是解題的關鍵.21、(1)45;(2)90°;(3)見解析.【解析】

(1)根據等腰三角形三線合一可得結論;(2)連接DB,先證明△BAD≌△CAD,得BD=CD=DF,則∠DBA=∠DFB=∠DCA,根據四邊形內角和與平角的定義可得∠BAC+∠CDF=180°,所以∠CDF=90°;(3)證明△EAF≌△DAF,得DF=EF,由②可知,可得結論.【詳解】(1)解:∵AB=AC,M是BC的中點,∴AM⊥BC,∠BAD=∠CAD,∵∠BAC=90°,∴∠CAD=45°,故答案為:45(2)解:如圖,連接DB.∵AB=AC,∠BAC=90°,M是BC的中點,∴∠BAD=∠CAD=45°.∴△BAD≌△CAD.∴∠DBA=∠DCA,BD=CD.∵CD=DF,∴BD=DF.∴∠DBA=∠DFB=∠DCA.∵∠DFB+∠DFA=180°,∴∠DCA+∠DFA=180°.∴∠BAC+∠CDF=180°.∴∠CDF=90°.(3).證明:∵∠EAD=90°,∴∠EAF=∠DAF=45°.∵AD=AE,∴△EAF≌△DAF.∴DF=EF.由②可知,.∴.【點睛】此題考查等腰三角形的性質,全等三角形的判定與性質,直角三角形的性質,解題關鍵在于掌握判定定理及性質.22、(1)證明見解析;(2)110°.【解析】分析:(1)欲證明DB=DE,只要證明∠BED=∠ABD即可;(2)因為△OAB是等腰三角形,屬于只要求出∠OBA即可解決問題;詳解:(1)證明:∵DC⊥OA,∴∠OAB+∠CEA=90°,∵BD為切線,∴OB⊥BD,∴∠OBA+∠ABD=90°,∵OA=OB,∴∠OAB=∠OBA,∴∠CEA=∠ABD,∵∠CEA=∠BED,∴∠BED=∠ABD,∴DE=DB.(2)∵DE=DB,∠BDE=70°,∴∠BED=∠ABD=55°,∵BD為切線,∴OB⊥BD,∴∠OBA=35°,∵OA=OB,∴∠OBA=180°-2×35°=110°.點睛:本題考查圓周角定理、切線的性質等知識,解題的關鍵是靈活運用所學知識解決問題,屬于中考常考

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論