




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
青海省西寧市公務員考試數量關系專項練習題第一部分單選題(200題)1、某機構調查居民訂閱報紙的情況,發現30%的家庭訂閱了日報,35%的家庭訂閱了早報,45%的家庭訂閱了晚報,10%的家庭沒有訂閱任何一種報紙,若每個家庭都不會同時訂早報和晚報,則同時訂閱日報和早報的家庭的比例在多少范圍之內?()
A、0~10%
B、10%~20%
C、0~20%
D、20%~30%
【答案】:答案:C
解析:根據“都不會同時訂閱”可知,同時訂三種報紙的為0。設同時訂閱日報和早報的為x,同時訂閱日報和晚報的為y。根據三集合容斥原理得:100%=30%+35%+45%-x-y-0+0+10%,解得x+y=20%。因此x在0~20%之間。故選C。2、145,120,101,80,65,()
A、48
B、49
C、50
D、51
【答案】:答案:A
解析:145=122+1,120=112-1,101=102+1,80=92-1,65=82+1,奇數項,每項等于首項為12,公差為-2的平方加1;偶數項,每項等于首項為11,公差為-2的平方減1,即所填數字為72-1=48。故選A。3、2,3,6,15,()
A、25
B、36
C、42
D、64
【答案】:答案:C
解析:相鄰兩項間做差。做差后得到的數為1,3,9;容易觀察出這是一個等比數列,所以做差數列的下一項為27,則答案為15+27=42。故選C。4、1,1,3,7,17,41,()
A、89
B、99
C、109
D、119
【答案】:答案:B
解析:第三項=第二項×2+第一項,99=41×2+17。故選B。5、甲、乙、丙三輛汽車分別從A地開往千里之外的B地。若乙比甲晚出發30分鐘,則乙出發后2小時追上甲;若丙比乙晚出發20分鐘,則丙出發后5小時追上乙。若甲出發10分鐘后乙出發,當乙追上甲時,丙才出發,則丙追上甲所需時間是()。
A、110分鐘
B、150分鐘
C、127分鐘
D、128分鐘
【答案】:答案:B
解析:設甲、乙、丙三輛汽車的速度分別為x、y、z。由于甲行駛30分鐘的路程,乙需要2小時才能追上,則30x=(y-x)×2×60,化簡得x∶y=4∶5。又因乙行駛20分鐘的路程,丙需要5小時才能追上,則20y=(z-y)×5×60,化簡得y∶z=15∶16。所以三輛汽車的速度x∶y∶z=12∶15∶16。賦值甲、乙、丙的速度分別為12、15、16,甲出發10分鐘后乙出發,則乙追上甲的時間為(分鐘),故丙出發時甲已經行駛10+40=50(分鐘),設丙追上甲所需時間是t分鐘,可得方程12×50=(16-12)×t,解得t=150。故選B。6、某校二年級全部共3個班的學生排隊.每排4人,5人或6人,最后一排都只有2人.這個學校二年級有()名學生。
A、120
B、122
C、121
D、123
【答案】:答案:B
解析:由題意知,學生數除以4、5、6均余2,由代入法可以得到,只有B項滿足條件。7、一旅行團共有50位游客到某地旅游,去A景點的游客有35位,去B景點的游客有32位,去C景點的游客有27位,去A、B景點的游客有20位,去B、C景點的游客有15位,三個景點都去的游客有8位,有2位游客去完一個景點后先行離團,還有1位游客三個景點都沒去。那么,50位游客中有多少位恰好去了兩個景點?()
A、29
B、31
C、35
D、37
【答案】:答案:A
解析:設去兩個景點的人數為y,根據三集合非標準型公式可得:35+32+27-y-2×8=50-1,解得y=29。故選A。8、有一個五位數,左邊的三位數比右邊的兩位數的4倍還多4,如果把右邊兩位數移到最前面,新的五位數比原來的2倍還多11122,則原來的五位數是()。
A、18044
B、24059
C、27267
D、30074
【答案】:答案:B
解析:多位數問題考慮用代入排除法解題。代入A選項,180=44×4+4,但44180≠18044×2+11122,不符合題意,排除;代入B選項,240=59×4+4,59240=24059×2+11122,符合題意,正確。故選B。9、某種茶葉原價30元一包,為了促銷,降低了價格,銷量增加了二倍,收入增加了五分之三,則一包茶葉降價()元。
A、12
B、14
C、13
D、11
【答案】:答案:B
解析:設原來茶葉的銷量為1,那么現在銷量為3。原來收入為30元,現在收入為30×(1+3/5)=48元,每包茶葉為48÷3=16元,降價30-16=14元。故選B。10、6,6,12,36,()
A、124
B、140
C、144
D、164
【答案】:答案:C
解析:兩兩相除。6/6=1,6/12=1/2,12/36=1/3,下個數為36/()=1/4。故選C。11、某商店以5元/斤的價格購入一批蔬菜,上午以8元/斤的價格賣出總進貨量的60%,中午以上午售出價的8折賣出總進貨量的20%,下午以中午售出價的一半賣出剩余貨量的一半,最后獲利210元。則該商店一共購入多少斤蔬菜?()
A、140
B、150
C、160
D、180
【答案】:答案:B
解析:賦值購進的量為10斤,上午以8元/斤的價格賣出6斤,中午以6.4元/斤的價格賣出2斤,下午以3.2元/斤的價格賣出1斤,總收入=8×6+6.4×2+3.2×1=64元,總利潤=64-5×10=14元,實際購入(210/14)×10=150斤。故選B。12、某種茶葉原價30元一包,為了促銷,降低了價格,銷量增加了二倍,收入增加了五分之三,則一包茶葉降價()元。
A、12
B、14
C、13
D、11
【答案】:答案:B
解析:設原來茶葉的銷量為1,那么現在銷量為3。原來收入為30元,現在收入為30×(1+3/5)=48元,每包茶葉為48÷3=16元,降價30-16=14元。故選B。13、2,11,32,()
A、56
B、42
C、71
D、134
【答案】:答案:C
解析:觀察題干數列可得:2=13+1,11=23+3,32=33+5,()=43+7。故括號處應為71。故選C。14、現有5盒動畫卡片,各盒卡片張數分別為:7、9、11、14、17。卡片按圖案分為米老鼠、葫蘆娃、喜羊羊和灰太狼4種,每個盒內裝的是同圖案的卡片。已知米老鼠的卡片只有一盒,而喜羊羊、灰太狼圖案的卡片數之和比葫蘆娃圖案的多1倍。據此可知,圖案為米老鼠的卡片張數為()。
A、7
B、9
C、14
D、17
【答案】:答案:A
解析:(喜洋洋+灰太狼):葫蘆娃=2:1,喜洋洋+灰太狼+葫蘆娃是3的倍數;總張數=7+9+11+14+17=58張,58除以3余1,可得米老鼠的卡片只能是7張。故選A。15、要將濃度分別為20%和5%的A、B兩種食鹽水混合配成濃度為15%的食鹽水900克,問5%的食鹽水需要多少克?()
A、250
B、285
C、300
D、325
【答案】:答案:C
解析:設需要5%的食鹽水x克,則需要20%的食鹽水(900-x)克;根據混合后濃度為15%,得[x×5%+(900-x)×20%]=900×15%,解得x=300(克)。故選C。16、5,4,10,8,15,16,(),()
A、20,18
B、18,32
C、20,32
D、18,36
【答案】:答案:C
解析:從題干中給出的數字不難看出,奇數項5,10,15,(20)構成公差為5的等差數列,偶數項4,8,16,(32)構成公比為2的等比數列。故選C。17、一旅行團共有50位游客到某地旅游,去A景點的游客有35位,去B景點的游客有32位,去C景點的游客有27位,去A、B景點的游客有20位,去B、C景點的游客有15位,三個景點都去的游客有8位,有2位游客去完一個景點后先行離團,還有1位游客三個景點都沒去。那么,50位游客中有多少位恰好去了兩個景點?()
A、29
B、31
C、35
D、37
【答案】:答案:A
解析:設去兩個景點的人數為y,根據三集合非標準型公式可得:35+32+27-y-2×8=50-1,解得y=29。故選A。18、5,7,4,6,4,6,()
A、4
B、5
C、6
D、7
【答案】:答案:B
解析:依次將相鄰兩個數中后一個數減去前一個數得2,-3,2,-2,2,奇數項是2,偶數項構成公差為1的等差數列,即所填數字為6+(-1)=5。故選B。19、某快速反應部隊運送救災物資到災區。飛機原計劃每分鐘飛行12千米,由于災情危急,飛行速度提高到每分鐘15千米,結果比原計劃提前30分鐘到達災區,則機場到災區的距離是多少千米?()
A、1600
B、1800
C、2050
D、2250
【答案】:答案:B
解析:設機場到災區的距離為x,由每分鐘飛行12千米可知,原飛行時間為;由每分鐘15千米可知,現飛行時間為。根據比原計劃提前30分鐘,可得,解得x=1800(千米)。故選B。20、1,2,0,3,-1,4,()
A、-2
B、0
C、5
D、6
【答案】:答案:A
解析:奇數項1、0、-1、(-2)是公差為-1的等差數列;偶數項2、3、4是連續自然數。故選A。21、3,4,10,33,136,()
A、685
B、424
C、314
D、149
【答案】:答案:A
解析:4=(3+1)×1,10=(4+1)×2,33=(10+1)×3,136=(33+1)×4,an=(an-1+1)×(n-1)(n≥2),即所填數字應為(136+1)×5=685。故選A。22、一人騎車上班需要50分鐘,途中騎了一段時間后自行車壞了,只好推車去上班,結果晚到10分鐘,如果騎車的速度比步行的速度快一倍,則步行了多少分鐘?()
A、20
B、34
C、40
D、50
【答案】:答案:A
解析:設騎車速度為2,步行速度為1,設步行時間為t分鐘,由題意可知,50×2=2(50+10-t)+1t,得t=20,即步行了20分鐘。故選A。23、4,8,28,216,()
A、6020
B、2160
C、4200
D、4124
【答案】:答案:A
解析:4×(8-1)=28,8×(28-1)=216,即所填數字為28×(216-1)=6020。故選A。24、4,10,34,130,()
A、184
B、258
C、514
D、1026
【答案】:答案:C
解析:解法一:二級等差數列變式。解法二:從第三項開始,第三項等于第二項的5倍減去第一項的4倍,即34=5×10-4×4,130=5×34-4×10,(514)=5×130-4×34。故選C。25、118,199,226,(),238
A、228
B、230
C、232
D、235
【答案】:答案:D
解析:相鄰兩項后一項減前一項,199-118=81,226-199=27,235-226=9,238-235=3,是公比為的等比數列,即所填數字為238-3=226+9=235。故選D。26、甲、乙、丙三輛汽車分別從A地開往千里之外的B地。若乙比甲晚出發30分鐘,則乙出發后2小時追上甲;若丙比乙晚出發20分鐘,則丙出發后5小時追上乙。若甲出發10分鐘后乙出發,當乙追上甲時,丙才出發,則丙追上甲所需時間是()。
A、110分鐘
B、150分鐘
C、127分鐘
D、128分鐘
【答案】:答案:B
解析:設甲、乙、丙三輛汽車的速度分別為x、y、z。由于甲行駛30分鐘的路程,乙需要2小時才能追上,則30x=(y-x)×2×60,化簡得x∶y=4∶5。又因乙行駛20分鐘的路程,丙需要5小時才能追上,則20y=(z-y)×5×60,化簡得y∶z=15∶16。所以三輛汽車的速度x∶y∶z=12∶15∶16。賦值甲、乙、丙的速度分別為12、15、16,甲出發10分鐘后乙出發,則乙追上甲的時間為(分鐘),故丙出發時甲已經行駛10+40=50(分鐘),設丙追上甲所需時間是t分鐘,可得方程12×50=(16-12)×t,解得t=150。故選B。27、6,3,5,13,2,63,()
A、-36
B、-37
C、-38
D、-39
【答案】:答案:B
解析:6×3-5=13,3×5-13=2,5×13-2=63,第四項=第一項×第二項-第三項,即所填數字為13×2-63=-37。故選B。28、130,68,30,(),2
A、11
B、12
C、10
D、9
【答案】:答案:C
解析:130=53+5,68=43+4,30=33+3,10=23+2,2=13+1。故選C。29、2,4,10,18,28,(),56
A、32
B、42
C、52
D、54
【答案】:答案:B
解析:因式分解數列。2=1×2,4=1×4,10=2×5,18=3×6,28=4×7,()=?×?,56=7×8,每一項的兩個因子之和分別為3、5、7、9、11、()、15,構成公差為2的等差數列。由此可知,空缺項的兩個因子的和為13,結合選項,只有B項的42=6×7分解后兩個因子的和為13。故選B。30、一人騎車上班需要50分鐘,途中騎了一段時間后自行車壞了,只好推車去上班,結果晚到10分鐘,如果騎車的速度比步行的速度快一倍,則步行了多少分鐘?()
A、20
B、34
C、40
D、50
【答案】:答案:A
解析:設騎車速度為2,步行速度為1,設步行時間為t分鐘,由題意可知,50×2=2(50+10-t)+1t,得t=20,即步行了20分鐘。故選A。31、119,83,36,47,()
A、-37
B、-11
C、11
D、37
【答案】:答案:B
解析:119=83+36,83=36+47,即所填數字為36-47=-11。故選B。32、在某城市中,有60%的家庭訂閱某種日報,有85%的家庭有電視機。假定這兩個事件是獨立的,今隨機抽出一個家庭,所抽家庭既訂閱該種日報又有電視機的概率是()。
A、0.09
B、0.25
C、0.36
D、0.51
【答案】:答案:D
解析:由于是獨立重復試驗,故既訂閱該中日報又有電視機的概率是60%×85%=51%。故選D。33、4,12,8,10,()
A、6
B、8
C、9
D、24
【答案】:答案:C
解析:思路一:4-12=-812-8=48-10=-210-9=1,其中,-8、4、-2、1等比。思路二:(4+12)/2=8(12+8)/2=10(10+8)/2=/=9。故選C。34、1,10,3,5,()
A、4
B、9
C、13
D、15
【答案】:答案:C
解析:把每項變成漢字為一、十、三、五、十三的筆畫數1,2,3,4,5等差。故選C。35、有4堆木材,都堆成正三角形垛,層數分別為5,6,7,8層,那么共有木材()根。
A、110
B、100
C、120
D、130
【答案】:答案:B
解析:5層木材有1+2+3+4+5=15,6層木材有1+2+3+4+5+6=21,7層木材有1+2+3+4+5+6+7=28,8層木材有1+2+3+4+5+6+7+8=36,所以共有15+21+28+36=100根木材。故選B。36、某樓盤的地下停車位,第一次開盤時平均價格為15萬元/個;第二次開盤時,車位的銷售量增加了一倍、銷售額增加了60%。那么,第二次開盤的車位平均價格為()。
A、10萬元/個
B、11萬元/個
C、12萬元/個
D、13萬元/個
【答案】:答案:C
解析:銷售額=平均價格×銷售量,已知第一次開盤平均價格為15萬元/個,賦銷售量為1,則銷售額為15萬。第二次開盤時,銷售量增加了一倍,即為2,銷售額增加了60%,得銷售額為15×(1+60%)=24(萬元),故第二次開盤平均價格為24÷2=12(萬元/個)。故選C。37、130,68,30,(),2
A、11
B、12
C、10
D、9
【答案】:答案:C
解析:130=53+5,68=43+4,30=33+3,10=23+2,2=13+1。故選C。38、2,7,13,20,25,31,()
A、35
B、36
C、37
D、38
【答案】:答案:D
解析:依次將相鄰兩個數中后一個數減去前一個數得5,6,7,5,6,為(5,6,7)三個數字組成的循環數列,即所填數字為31+7=38。故選D。39、甲、乙和丙三種不同濃度、不同規格的酒精溶液,每瓶重量分別為3公斤、7公斤和9公斤,如果將甲乙各一瓶、甲丙各一瓶和乙丙各一瓶分別混合,得到的酒精濃度分別為50%,50%和60%。如果將三種酒精合各一瓶混合,得到的酒精中要加入多少公斤純凈水后,其濃度正好是50%?()
A、1
B、1.3
C、1.6
D、1.9
【答案】:答案:C
解析:甲乙各一瓶、甲丙各一瓶和乙丙各一瓶分別混合,相當于兩瓶甲、兩瓶乙、兩瓶丙混合,前兩種濃度都是50%,所以只需要加入適量水使得乙丙混合濃度由60%變為50%即可。設加水x,可將濃度為60%的酒精溶液溶度變為50%,即,解得x=3.2(公斤)。此時甲乙,甲丙和乙丙溶液各一瓶混合后濃度必然為50%。若甲、乙和丙各一瓶混合時濃度仍然為50%,則需加水為(公斤)。故選C。40、某果品公司計劃安排6輛汽車運載A、B、C三種水果共32噸進入某市銷售,要求每輛車只裝同一種水果且必須裝滿,根據下表提供的信息,則有()種安排車輛方案。
A、1
B、2
C、3
D、4
【答案】:答案:A
解析:設運送三種水果的車輛數分別為X、Y、Z,根據題意可列式①X+Y+Z=6;②6X+5Y+4Z=32,X、Y、Z為車輛數都為正整數,②中6X和4Z都為偶數,所以Y必然是偶數,且Y≤4,Y=2或4。當Y=4時X=2、Z=0不符合題意,故本題解只有一組X=3、Y=2、Z=1。故選A。41、一旅行團共有50位游客到某地旅游,去A景點的游客有35位,去B景點的游客有32位,去C景點的游客有27位,去A、B景點的游客有20位,去B、C景點的游客有15位,三個景點都去的游客有8位,有2位游客去完一個景點后先行離團,還有1位游客三個景點都沒去。那么,50位游客中有多少位恰好去了兩個景點?()
A、29
B、31
C、35
D、37
【答案】:答案:A
解析:設去兩個景點的人數為y,根據三集合非標準型公式可得:35+32+27-y-2×8=50-1,解得y=29。故選A。42、當含鹽30%的60千克鹽水蒸發為含鹽40%的鹽水時,鹽水重量為多少千克?()
A、45
B、50
C、55
D、60
【答案】:答案:A
解析:設蒸發后鹽水質量為x千克,由鹽水中鹽的質量不變可得,60×30%=40%x,解得x=45。故選A。43、1/2,1,1,(),9/11,11/13
A、2
B、3
C、1
D、9
【答案】:答案:C
解析:1/2,1,1,(),9/11,11/13=>1/2,3/3,5/5,7/7,9/11,11/13=>分子1,3,5,7,9,11等差;分母2,3,5,7,11,13連續質數列。故選C。44、A、B、C三個試管中各盛有10克、20克、30克水,把某種濃度的鹽水10克倒入A中,充分混合后從A中取出10克倒入B中,再充分混合后從B中取出10克倒入C中,最后得到C中鹽水的濃度為0.5%。則開始倒入試管A中的鹽水濃度是多少?()
A、12%
B、15%
C、18%
D、20%
【答案】:答案:A
解析:C中含鹽量為(30+10)×0.5%=0.2克,即從B中取出的10克中含鹽0.2克,則B的濃度為0.2÷10=2%,進而求出B中含鹽量為(20+10)×2%=0.6克,即從A中取出的10克中含鹽0.6克,可得A的濃度為0.6÷10=6%,進一步得出A中含鹽量為(10+10)×6%=1.2克,故開始倒入A中的鹽水濃度為1.2÷10=12%。故選A。45、某城市居民用水價格為:每戶每月不超過5噸的部分按4元/噸收取;超過5噸不超過10噸的部分按6元/噸收?。怀^10噸的部分按8元/噸收取。某戶居民兩個月共交水費108元,則該戶居民這兩個月用水總量最多為多少噸?()
A、17.25
B、21
C、21.33
D、24
【答案】:答案:B
解析:總費用一定,要使兩個月的用水總量最多,需盡量使用低價水。先將兩個月4元/噸的額度用完,花費4×5×2=40(元);再將6元/噸的額度用完,花費6×5×2=60(元)。由兩個月共交水費108元可知,還剩108-40-60=8(元),可購買1噸單價為8元/噸的水。該戶居民這兩個月用水總量最多為5×2+5×2+1=21(噸)。故選B。46、-13,19,58,106,165,()
A、189
B、198
C、232
D、237
【答案】:答案:D
解析:二級等差。(即作差2次后,所得相同)。故選D。47、某木場有甲,乙,丙三位木匠師傅生產桌椅,甲每天能生產12張書桌或13把椅子;乙每天能生產9張書桌或12把椅子,丙每天能生產9張書桌或15把椅子,現在書桌和椅子要配套生產(每套一張書桌一把椅子),則7天內這三位師傅最多可以生產桌椅()套。
A、116
B、129
C、132
D、142
【答案】:答案:B
解析:將甲、乙、丙三位木匠師傅生產桌椅的效率列表如下,分析可知,甲生產書桌的相對效率最高,丙生產椅子的相對效率最高,則安排甲7天全部生產書桌,丙7天全部生產椅子,乙協助甲丙完成。甲7天可生產桌子12×7=84(張),丙7天可生產椅子15×7=105(把)。設乙生產書桌x天,則生產椅子(7-x)天,當生產的書桌數與椅子數相同時,獲得套數最多,可列方程84+9x=105+12×(7-x),解得x=5,則乙可生產書桌9×5=45(張)。故7天內這三位師傅最多可以生產桌椅84+45=129(套)。故選B。48、5,17,21,25,()
A、30
B、31
C、32
D、34
【答案】:答案:B
解析:都為奇數。故選B。49、2.1,2.2,4.1,4.4,16.1,()
A、32.4
B、16.4
C、32.16
D、16.16
【答案】:答案:D
解析:偶數項的小數部分和整數部分相同。故選D。50、某樓盤的地下停車位,第一次開盤時平均價格為15萬元/個;第二次開盤時,車位的銷售量增加了一倍、銷售額增加了60%。那么,第二次開盤的車位平均價格為()。
A、10萬元/個
B、11萬元/個
C、12萬元/個
D、13萬元/個
【答案】:答案:C
解析:銷售額=平均價格×銷售量,已知第一次開盤平均價格為15萬元/個,賦銷售量為1,則銷售額為15萬。第二次開盤時,銷售量增加了一倍,即為2,銷售額增加了60%,得銷售額為15×(1+60%)=24(萬元),故第二次開盤平均價格為24÷2=12(萬元/個)。故選C。51、2,7,14,21,294,()
A、28
B、35
C、273
D、315
【答案】:答案:D
解析:21=7+14,14=2×7,294=14×21,為兩項相加、相乘交替得到后-項,即所填數字為21+294=315。故選D。52、某木場有甲,乙,丙三位木匠師傅生產桌椅,甲每天能生產12張書桌或13把椅子;乙每天能生產9張書桌或12把椅子,丙每天能生產9張書桌或15把椅子,現在書桌和椅子要配套生產(每套一張書桌一把椅子),則7天內這三位師傅最多可以生產桌椅()套。
A、116
B、129
C、132
D、142
【答案】:答案:B
解析:將甲、乙、丙三位木匠師傅生產桌椅的效率列表如下,分析可知,甲生產書桌的相對效率最高,丙生產椅子的相對效率最高,則安排甲7天全部生產書桌,丙7天全部生產椅子,乙協助甲丙完成。甲7天可生產桌子12×7=84(張),丙7天可生產椅子15×7=105(把)。設乙生產書桌x天,則生產椅子(7-x)天,當生產的書桌數與椅子數相同時,獲得套數最多,可列方程84+9x=105+12×(7-x),解得x=5,則乙可生產書桌9×5=45(張)。故7天內這三位師傅最多可以生產桌椅84+45=129(套)。故選B。53、2,6,13,39,15,45,23,()
A、46
B、66
C、68
D、69
【答案】:答案:D
解析:6=2×3,39=13×3,45=15×3。兩個數為一組,每組中的第二個數是第一個數的三倍,即所填數字為23×3=69。故選D。54、甲、乙二人現在的年齡之和是一個完全平方數。7年前,他們各自的年齡都是完全平方數。再過多少年,他們的年齡之和又是完全平方數?()
A、20
B、18
C、16
D、9
【答案】:答案:B
解析:設七年前甲、乙的年齡分別為x、y歲,則七年后兩人的年齡和為(x+7)+(y+7)=x+y+14,根據題意x、y、x+y+14均為完全平方數。100以內的平方數有1、4、9、16、25、36、49、64、81、100,其中1+49+14=64,1、49、64均為完全平方數,則七年前甲1歲,乙49歲,現在甲為8歲,乙為56歲,年齡和為64,甲乙年齡和為偶數,下一個平方數為偶數的是100,需要再過(100-64)÷2=18年。故選B。55、1,10,3,5,()
A、4
B、9
C、13
D、15
【答案】:答案:C
解析:把每項變成漢字為一、十、三、五、十三的筆畫數1,2,3,4,5等差。故選C。56、2,3,10,23,()
A、35
B、42
C、68
D、79
【答案】:答案:B
解析:相鄰兩項后一項減前一項,3-2=1,10-3=7,13-10=13,42-23=19,是一個公差為6的等差數列,即所填數字為23+19=42。故選B。57、7,9,-1,5,()
A、3
B、-3
C、2
D、-1
【答案】:答案:B
解析:7+9=16,9+(-1)=8,(-1)+5=4,5+(-3)=2,其中16,8,4,2等比。故選B。58、30個小朋友圍成一圈玩傳球游戲,每次球傳給下一個小朋友需要1秒。當老師喊“轉向”時,要改變傳球方向。如果從小華開始傳球,老師在游戲開始后的第16、31、49秒喊“轉向”,那么在第多少秒時,球會重新回到小華手上?()
A、68
B、69
C、70
D、71
【答案】:答案:A
解析:設小華的位置為0號,按順時針方向編號依次為0號、1號、2號、……、29號。小華以順時針方向開始傳球。①經過16秒,順時針傳到16號;②轉向:經過15秒(31-16=15),逆時針傳到1號;③轉向:經過18秒(49-31=18),順時針傳到19號;④轉向:經過19秒,逆時針傳回到小華手中。在第49+19=68(秒)時,球會重新回到小華手上。故選A。59、8,6,-4,-54,()
A、-118
B、-192
C、-320
D、-304
【答案】:答案:D
解析:依次將相鄰兩個數中后一個數減去前一個數得-2,-10,-50,構成公比為5的等比數列,即所填數字為-54+(-250)=-304。故選D。60、2,3,13,175,()
A、30625
B、30651
C、30759
D、30952
【答案】:答案:B
解析:第一項乘以2,然后加第二項的平方等于第三項。2×2+3×3=13。第二項乘以2,然后加第三項的平方等于第四項。3×2+13×13=175。第三項乘以2,然后加第四項的平方等于第五項。13×2+175×175=30651。故選B。61、某木場有甲,乙,丙三位木匠師傅生產桌椅,甲每天能生產12張書桌或13把椅子;乙每天能生產9張書桌或12把椅子,丙每天能生產9張書桌或15把椅子,現在書桌和椅子要配套生產(每套一張書桌一把椅子),則7天內這三位師傅最多可以生產桌椅()套。
A、116
B、129
C、132
D、142
【答案】:答案:B
解析:將甲、乙、丙三位木匠師傅生產桌椅的效率列表如下,分析可知,甲生產書桌的相對效率最高,丙生產椅子的相對效率最高,則安排甲7天全部生產書桌,丙7天全部生產椅子,乙協助甲丙完成。甲7天可生產桌子12×7=84(張),丙7天可生產椅子15×7=105(把)。設乙生產書桌x天,則生產椅子(7-x)天,當生產的書桌數與椅子數相同時,獲得套數最多,可列方程84+9x=105+12×(7-x),解得x=5,則乙可生產書桌9×5=45(張)。故7天內這三位師傅最多可以生產桌椅84+45=129(套)。故選B。62、7.1,8.6,14.2,16.12,28.4,()
A、32.24
B、30.4
C、32.4
D、30.24
【答案】:答案:A
解析:奇數項和偶數項間隔來看,整數部分和小數部分分別構成公比為2的等比數列。故選A。63、一件商品相繼兩次分別按折扣率為10%和20%進行折扣,已知折扣后的售價為540元,那么折扣前的售價為()。
A、600元
B、680元
C、720元
D、750元
【答案】:答案:D
解析:設原售價為x元,利用“折扣后售價為540元”得x(1-10%)(1-20%)=540。解得x=750。故選D。64、130,68,30,(),2
A、11
B、12
C、10
D、9
【答案】:答案:C
解析:130=53+5,68=43+4,30=33+3,10=23+2,2=13+1。故選C。65、某旅游部門規劃一條從甲景點到乙景點的旅游線路,經測試,旅游船從甲到乙順水勻速行駛需3小時;從乙返回甲逆水勻速行駛需4小時。假設水流速度恒定,甲乙之間的距離為y公里,旅游船在靜水中勻速行駛y公里需要x小時,則x滿足的方程為()。
A、1/3-1/x=1/x-1/4
B、1/3-1/x=1/4+1/x
C、1/(x+3)=1/4-1/x
D、1/(4-x)=1/x+1/3
【答案】:答案:A
解析:由題意可知,旅游船的靜水速度為y/x公里/時,順水速度為y/3公里/時,逆水速度為y/4公里/時。由水速=水速度-靜水速度=靜水速度-逆水速度,我們可得:y/3-y/x=y/x-y/4,消去y,得:1/3-1/x=1/x-1/4,故選A??键c點撥:解決流水問題的關鍵在于找出船速、水速、順水速度和逆水速度四個量,然后根據其之間的關系求出未知量。故選A。66、4,5,7,9,13,15,()
A、17
B、19
C、18
D、20
【答案】:答案:B
解析:各項減2后為質數列,故下一項為17+2=19。故選B。67、5,10,20,(),80
A、30
B、40
C、50
D、60
【答案】:答案:B
解析:公比為2的等比數列。故選B。68、118,199,226,(),238
A、228
B、230
C、232
D、235
【答案】:答案:D
解析:相鄰兩項后一項減前一項,199-118=81,226-199=27,235-226=9,238-235=3,是公比為的等比數列,即所填數字為238-3=226+9=235。故選D。69、[(9,6),42,(7,7)],[(7,3),40,(6,4)],[(8,2),(),(3,2)]
A、30
B、32
C、34
D、36
【答案】:答案:A
解析:(9-6)×(7+7)=42,(7-3)×(6+4)=40,每組中前兩項的差×后兩項的和=中間項。即所填數字為(8-2)×(3+2)=30。故選A。70、3,11,13,29,31,()
A、52
B、53
C、54
D、55
【答案】:答案:D
解析:奇偶項分別相差11-3=8,29-13=16=8×2,問號-31=24=8×3則可得?=55。故選D。71、某班有56名學生,每人都參加了a、b、c、d、e五個興趣班中的一個。已知有27人參加a興趣班,參加b興趣班的人數第二多,參加c、d興趣班的人數相同,e興趣班的參加人數最少,只有6人,問參加b興趣班的學生有多少個?()
A、7個
B、8個
C、9個
D、10個
【答案】:答案:C
解析:設b班人數為x,c、d班的人數均為y,由b班人數第二多,e班人數最少,可知各班人數關系為:27>x>y>6。該班有56名學生,56=27+x+y+y+6,即x+2y=23,其中2y是偶數,23為奇數,則x為奇數,排除B、D。代入A選項,當x=7時,y=8,則x<Y,不符合題意,排除。故選C。72、5,7,4,6,4,6,()
A、4
B、5
C、6
D、7
【答案】:答案:B
解析:依次將相鄰兩個數中后一個數減去前一個數得2,-3,2,-2,2,奇數項是2,偶數項構成公差為1的等差數列,即所填數字為6+(-1)=5。故選B。73、1,1,2,6,30,240,()
A、1200
B、1800
C、2400
D、3120
【答案】:答案:D
解析:1*2=2,2*3=6,6*5=30,30*8=240,后面除以前面的商是斐波那契數列2、3、5、8,即后一項是前面2項的和,8后面是13,240后面應該是240*13=3120。故選D。74、1,10,26,75,196,()
A、380
B、425
C、520
D、612
【答案】:答案:C
解析:第一步相差,得到9,16,49,121,明顯是平方,分別是3,4,7,11的平方,發現都是第一項+第二項=第三項,所以下一個差值是(7+11)的平方,也就是18的平方,而下個數就應該是196+18的平方等于520。故選C。75、玉米的正常市場價格為每公斤1.86元到2.18元,近期某地玉米價格漲至每公斤2.68元。經測算,向市場每投放儲備玉米100噸,每公斤玉米價格下降0.05元。為穩定玉米價格,向該地投放儲備玉米的數量不能超過()。
A、800噸
B、1080噸
C、1360噸
D、1640噸
【答案】:答案:D
解析:要穩定玉米價格,玉米的價格必須調整至正常區間。所以最低下降為每公斤1.86元,即下降了2.68-1.86=0.82(元)。因為每投放100噸,價格下降0.05元,所以投放玉米的數量不能超過0.82÷0.05×100=1640(噸)。故選D。76、2,3,6,18,108,()
A、1944
B、1620
C、1296
D、1728
【答案】:答案:A
解析:2×3=6,3×6=18,6×18=108,……前兩項相乘等于下一項,則所求項為18×108,尾數為4。故選A。77、1,2,3,6,12,()
A、16
B、20
C、24
D、36
【答案】:答案:C
解析:分3組=>(1,2),(3,6),(12,24)=>每組后項除以前項=>2、2、2。故選C。78、某高速公路收費站對過往車輛的收費標準是:大型車30元/輛、中型車15元/輛、小型車10元/輛。某天,通過收費站的大型車與中型車的數量比是5∶6,中型車與小型車的數量比是4∶11,小型車的通行費總數比大型車的多270元,這天的收費總額是()。
A、7280元
B、7290元
C、7300元
D、7350元
【答案】:答案:B
解析:大、中、小型車的數量比為10∶12∶33。以10輛大型車、12輛中型車、33輛小型車為一組。每組小型車收費比大型車多33×10-10×30=30元。實際多270元,說明共通過了270÷30=9組。每組收費10×30+12×15+33×10=810元,收費總額為9×810=7290元。故選B。79、調研人員在一次市場調查活動中收回了435份調查問卷,其中80%的調查問卷上填寫了被調查者的手機號碼。那么調研人員至少需要從這些調查表中隨機抽出多少份,才能保證一定能找到兩個手機號碼后兩位相同的被調查者?()
A、101
B、175
C、188
D、200
【答案】:答案:C
解析:在435份調查問卷中有435×20%=87份沒有寫手機號;且手機號碼后兩位可能出現的情況一共10×10=100種,因此要保證一定能找到兩個手機號碼后兩位相同的被調查者,至少需要抽取87+100+1=188份。故選C。80、25與一個三位數相乘個位是0,與這個三位數相加有且只有一次進位,像這樣的三位數總共有多少個? ()
A、48
B、126
C、174
D、180
【答案】:答案:C
解析:因為25與一個三位數相乘個位是0,所以這個三位數個位上的數是0、2、4、6、8。又因為與這個三位數相加有且只有一次進位,所以當個位是0、2、4時,十位必須是8或9,百位是1-8八個數都可以,這種情況有48(8乘2乘3等于48)個數滿足條件;當個位是6或8時,十位可以是0、1、2、3、4、5、6七個數,百位是1-9九個數,這種情況有126(9乘7乘2等于126)個數滿足條件;終上所述一共有174(48+126=174)個,即:像這樣的三位數總共有174個。故選C。81、接受采訪的100個大學生中,88人有手機,76人有電腦,其中有手機沒電腦的共15人,則這100個學生中有電腦但沒手機的共有多少人?()
A、25
B、15
C、5
D、3
【答案】:答案:D
解析:根據有手機沒電腦共15人,可得既有手機又有電腦(①部分)的人數為88-15=73人,則有電腦但沒手機(②部分)的人數為76-73=3人。故選D。82、某年的10月里有5個星期六,4個星期日,則這年的10月1日是?()
A、星期一
B、星期二
C、星期三
D、星期四
【答案】:答案:D
解析:10月有31天,因為有5個星期六,4個星期日,所以10月31日是星期六。31=4×7+3,所以10月3日也是星期六,故10月1日是星期四。故選D。83、1,2,0,3,-1,4,()
A、-2
B、0
C、5
D、6
【答案】:答案:A
解析:奇數項1、0、-1、(-2)是公差為-1的等差數列;偶數項2、3、4是連續自然數。故選A。84、78,9,64,17,32,19,()
A、18
B、20
C、22
D、26
【答案】:答案:A
解析:兩兩相加=>87、73、81、49、51、37=>每項除以3,則余數為=>0、1、0、1、0、1。故選A。85、2,6,30,210,2310,()
A、30160
B、30030
C、40300
D、32160
【答案】:答案:B
解析:依次將相鄰兩個數中后一個數除以前一個數得3,5,7,11,為一個質數數列,即所填數字為2310×13=30030。故選B。86、6,21,43,72,()
A、84
B、96
C、108
D、112
【答案】:答案:C
解析:依次將相鄰兩個數中后一個數減去前一個數得15,22,29,構成公差為7的等差數列,即所填數字為72+29+7=108。故選C。87、1/2,1,1,(),9/11,11/13
A、2
B、3
C、1
D、9
【答案】:答案:C
解析:1/2,1,1,(),9/11,11/13=>1/2,3/3,5/5,7/7,9/11,11/13=>分子1,3,5,7,9,11等差;分母2,3,5,7,11,13連續質數列。故選C。88、某班一次數學測試,全班平均91分,其中男生平均88分,女生平均93分,則女生人數是男生人數的多少倍?()
A、0.5
B、1
C、1.5
D、2
【答案】:答案:C
解析:設男生、女生人數分別為x、y,可得88x+93y=91(x+y),解得,即女生是男生的1.5倍。故選C。89、2,3,6,15,()
A、25
B、36
C、42
D、64
【答案】:答案:C
解析:相鄰兩項間做差。做差后得到的數為1,3,9;容易觀察出這是一個等比數列,所以做差數列的下一項為27,則答案為15+27=42。故選C。90、0,3,18,33,68,95,()
A、145
B、148
C、150
D、153
【答案】:答案:C
解析:原數列寫為0=0×1,3=1×3,18=2×9,33=3×11,68=4×17,95=5×19,其中1,3,9,11,17,19構成的數列奇數項是等差數列,偶數項也是等差數列。故空缺處數字為6×25=150。故選C。91、為幫助果農解決銷路,某企業年底買了一批水果,平均發給每部門若干筐之后還多了12筐,如果再買進8筐則每個部門可分得10筐,則這批水果共有()筐。
A、192
B、198
C、200
D、212
【答案】:答案:A
解析:由于再買進8筐則每個部門可分得10筐,則總筐數加8應能被10整除,排除B、C。將A項代入題目,可得部門數為(192+8)÷10=20(個),則原來平均發給每部門(192-12)÷20=9(筐),水果筐數為整數解,符合題意。故選A。92、90,85,81,78,()
A、75
B、74
C、76
D、73
【答案】:答案:C
解析:后項減去前項,可得-5、-4、-3、(-2),這是一個公差為1的等差數列,所以下一項為78-2=76。故選C。93、1,3,2,6,11,19,()
A、24
B、36
C、29
D、38
【答案】:答案:B
解析:該數列為和數列,即前三項之和為第四項。故空缺處應為6+11+19=36。故選B。94、8,10,14,18,()
A、24
B、32
C、26
D、20
【答案】:答案:C
解析:8×2-6=10;10×2-6=14;14×2-10=18;18×2-10=26。故選C。95、130,68,30,(),2
A、11
B、12
C、10
D、9
【答案】:答案:C
解析:130=53+5,68=43+4,30=33+3,10=23+2,2=13+1。故選C。96、2,6,18,54,()
A、186
B、162
C、194
D、196
【答案】:答案:B
解析:該數列是以3為公比的等比數列,故空缺項為:54×3=162。故選B。97、某農戶在魚塘里放養了一批桂花魚苗。過了一段時間,為了得知魚苗存活數量,他先從魚塘中捕出200條魚,做上標記之后,再放回魚塘,過幾天后,再從魚塘捕出500條魚,其中有標記的魚苗有25條。假設存活的魚苗在這幾天沒有死,則這個魚塘里存活魚苗的數量最有可能是()條。
A、1600
B、2500
C、3400
D、4000
【答案】:答案:D
解析:由的25/200=500/x,解得x=4000。故選D。98、有4堆木材,都堆成正三角形垛,層數分別為5,6,7,8層,那么共有木材()根。
A、110
B、100
C、120
D、130
【答案】:答案:B
解析:5層木材有1+2+3+4+5=15,6層木材有1+2+3+4+5+6=21,7層木材有1+2+3+4+5+6+7=28,8層木材有1+2+3+4+5+6+7+8=36,所以共有15+21+28+36=100根木材。故選B。99、5,10,20,(),80
A、30
B、40
C、50
D、60
【答案】:答案:B
解析:公比為2的等比數列。故選B。100、有一只青蛙在井底,每天上爬10米,又下滑6米,這口井深20米,這只青蛙爬出井口至少需要多少天?()
A、2
B、3
C、4
D、5
【答案】:答案:C
解析:第一天青蛙爬了10-6=4米,距離井口20-4=16米;第二天爬了4+(10-6)=8米,距離井口20-8=12米;第三天爬了8+(10-6)=12米,距離井口20-12=8米<10米;第四天青蛙可以直接爬出井口。這只青蛙爬出井口至少要4天。故選C。101、一個人從家到公司,當他走到路程的一半的時候,速度下降了10%,問:他走完全程所用時間的前半段和后半段所走的路程比是()。
A、10:9
B、21:19
C、11:9
D、22:18
【答案】:答案:B
解析:設前半程速度為10,則后半程速度為9,路程總長為180,則前半程用時9,后半程用時10,總耗時19,一半為9.5。因此前半段時間走過的路程為90+9×(9.5-9)=94.5,后半段時間走過的路程為9×9.5=85.5。兩段路程之比為94.5:85.5=21:19。故選B。102、-24,3,30,219,()
A、289
B、346
C、628
D、732
【答案】:答案:D
解析:-24=(-3)3+3,3=03+3,30=33+3,219=63+3,即所填數字為93+3=732。故選D。103、甲、乙和丙三種不同濃度、不同規格的酒精溶液,每瓶重量分別為3公斤、7公斤和9公斤,如果將甲乙各一瓶、甲丙各一瓶和乙丙各一瓶分別混合,得到的酒精濃度分別為50%,50%和60%。如果將三種酒精合各一瓶混合,得到的酒精中要加入多少公斤純凈水后,其濃度正好是50%?()
A、1
B、1.3
C、1.6
D、1.9
【答案】:答案:C
解析:甲乙各一瓶、甲丙各一瓶和乙丙各一瓶分別混合,相當于兩瓶甲、兩瓶乙、兩瓶丙混合,前兩種濃度都是50%,所以只需要加入適量水使得乙丙混合濃度由60%變為50%即可。設加水x,可將濃度為60%的酒精溶液溶度變為50%,即,解得x=3.2(公斤)。此時甲乙,甲丙和乙丙溶液各一瓶混合后濃度必然為50%。若甲、乙和丙各一瓶混合時濃度仍然為50%,則需加水為(公斤)。故選C。104、有蘋果若干個,若把其換成桔子,則多換5個;若把其換成菠蘿,則少掉7個,已知每個桔子4角9分錢,每個菠蘿7角錢,每個蘋果的單價是多少?()
A、5角
B、5角8分
C、5角6分
D、5角4分
【答案】:答案:C
解析:此題可理解為:把蘋果全部賣掉,得到錢若干,若用這些錢買成同樣數量的桔子,則剩下49×5=245分,若用這些錢買成同樣數量的菠蘿,則缺少70×7=490分,所以蘋果個數=(245+490)÷(70-49)=35個,蘋果總價=49×35+49×5=1960分,每個蘋果單價=1960÷35=56分=5角6分。故選C。105、2.08,8.16,24.32,64.64,()
A、160.28
B、124.28
C、160.56
D、124.56
【答案】:答案:A
解析:小數點之前滿足規律:(8-2)×4=24,(24-8)×4=64,(64-24)×4=160,排除B.D兩項。小數點之后構成等比數列8,16,32,64,128,小數點之后的數超過三位取后兩位,所以未知項是160.28。故選A。106、甲、乙兩人在一條400米的環形跑道上從相距200米的位置出發,同向勻速跑步。當甲第三次追上乙的時候,乙跑了2000米。問甲的速度是乙的多少倍?()
A、1.2
B、1.5
C、1.6
D、2.0
【答案】:答案:B
解析:環形同點同向出發每追上一次,甲比乙多跑一圈。第一次由于是不同起點,甲比乙多跑原來的差距200米;之后兩次追上都多跑400米,甲一共比乙多跑200+400×2=1000(米)。乙跑了2000米,甲跑了3000米,時間相同,則速度比與路程比也相同,可知甲的速度是乙的3000÷2000=1.5倍。故選B。107、2,3,10,15,26,35,()
A、40
B、45
C、50
D、55
【答案】:答案:C
解析:2=1平方+1,3=2平方-1,10=3平方+1,15=4平方-1,26=5平方+1,35=6平方-1,問號=7平方+1,問號=50。故選C。108、小張購買了2個蘋果、3根香蕉、4個面包和5塊蛋糕,共消費58元。如果四種商品的單價都是正整數且各不相同,則每塊蛋糕的價格最高可能為多少元?()
A、5
B、6
C、7
D、8
【答案】:答案:D
解析:設蘋果、香蕉、面包、蛋糕的單價分別為x、y、z、w,根據共消費58元,得2x+3y+4z+5w=58。代入排除,根據最高,優先從值最大的選項代入。D選項,當w=8時,可得2x+3y+4z=18,由2x、4z、18均為偶數,則3y為偶數,即y為偶數且小于6。當y=2,有2x+4z=12,即x+2z=6,均為正整數且各不相同,若z=1,則x=4,此時滿足題意。故選D。109、5,7,4,6,4,6,()
A、4
B、5
C、6
D、7
【答案】:答案:B
解析:依次將相鄰兩個數中后一個數減去前一個數得2,-3,2,-2,2,為奇數項是2偶數項為公差為1的等差數列,即所填數字為6+(-1)=5。故選B。110、8,4,8,10,14,()
A、22
B、20
C、19
D、24
【答案】:答案:C
解析:題干數列為遞推數列,規律為:8÷2+4=8,4÷2+8=10,8÷2+10=14,即第一項÷2+第二項=第三項,因此未知項為10÷2+14=19。故選C。111、在某企業,40%的員工有至少3年的工齡,16個員工有至少8年的工齡。如果90%的員工的工齡不足8年,則工齡至少3年但不足8年的員工有()人。
A、48
B、64
C、80
D、144
【答案】:答案:A
解析:由于不足8年工齡的員工占90%,則至少8年工齡的員工占1-90%=10%,可得員工總數為16÷10%=160(人),故工齡至少3年但不足8年的員工有160×40%-16=48(人)。故選A。112、8,3,17,5,24,9,26,18,30,()
A、22
B、25
C、33
D、36
【答案】:答案:B
解析:多重數列。很明顯數列很長,確定為多重數列。先考慮交叉,發現沒有規律,無對應的答案。因為總共十項,考慮兩兩分組,再內部作加減乘除方等運算,發現每兩項的和依次為11,22,33,44,(55=30+25)。故選B。113、-1,3,-3,-3,-9,()
A、-9
B、-4
C、-14
D、-45
【答案】:答案:D
解析:題干倍數關系明顯,考慮作商。后項除以前項得到新數列:-3、-1、1、3,新數列為公差是2的等差數列,則新數列的下一項應為5,所求項為:-9×5=-45。故選D。114、-1,6,25,62,()
A、123
B、87
C、150
D、109
【答案】:答案:A
解析:-1=1-2=13-2,6=8-2=23-2,25=27-2=33-2,62=64-2=43-2,53-2=125-2=123。故選A。115、某水庫共有10個泄洪閘,當10個泄洪閘全部打開時,8小時可將水位由警戒水位降至安全水位;只打開6個泄洪閘時,這個過程為24個小時,如水庫每小時的入庫量穩定,問如果打開8個泄洪閘時,需要多少小時可將水位降至安全水位?()
A、10
B、12
C、14
D、16
【答案】:答案:B
解析:設水庫每小時的入庫量為x。根據題意可列方程(10-x)8=(6-x)24,解得x=4,故水庫警戒水位至安全水位的容量為(10-4)×8=48;設打開8個泄洪閘需t小時可將水位降至安全水位;則48=(8-4)t,解得t=12。故選B。116、有4堆木材,都堆成正三角形垛,層數分別為5,6,7,8層,那么共有木材()根。
A、110
B、100
C、120
D、130
【答案】:答案:B
解析:5層木材有1+2+3+4+5=15,6層木材有1+2+3+4+5+6=21,7層木材有1+2+3+4+5+6+7=28,8層木材有1+2+3+4+5+6+7+8=36,所以共有15+21+28+36=100根木材。故選B。117、2,7,14,21,294,()
A、28
B、35
C、273
D、315
【答案】:答案:D
解析:21=7+14,14=2×7,294=14×21,為兩項相加、相乘交替得到后-項,即所填數字為21+294=315。故選D。118、辦公室小李發現寫字臺上的臺歷很久沒有翻了,就一次翻了7張,這些臺歷的日期數加起來恰好是77,請問這一天是幾號?()
A、14
B、15
C、16
D、17
【答案】:答案:B
解析:翻過去的7天的日期是公差為1的等差數列,和是77,根據等差數列求和公式,可知中位數=77÷7=11,7天中位數是第4天即第4天為11號。第七天是11+(7-4)×1=14號,可知今天是15號。故選B。119、某服裝店有一批襯衣共76件,分別賣給了33位顧客,每位顧客最多買了3件。襯衣定價為100元,買1件按原價,買2件總價打九折,買3件總價打八折。最后賣完這批襯衣共收入6460元,則買了3件的顧客有()位。
A.4
B.8
C.14
D.15
【答案】:答案:C
解析:由題意可設買了1件、2件、3件衣服的人數分別為x、y、z人,則可得x+y+z=33,x+2y+3z=76,,聯立求解可得x=4,y=15,z=14。故正確答案為C。120、水面上有三艘同向行駛的輪船,其中甲船的時速為63公里,乙、丙兩船的時速均為60公里,但由于故障,丙船每連續行駛30分鐘后必須停船2分鐘。早上10點,三船到達同一位置,問1小時后,甲、丙兩船最多相距多少公里?()
A、5
B、7
C、9
D、11
【答案】:答案:B
解析:1小時內,甲船行駛了63公里,丙船最多停車4分鐘,即行駛56分鐘,行駛路程為56公里。故最多相距7公里。故選B。121、某制衣廠接受一批服裝訂貨任務,按計劃天數進行生產,如果每天平均生產20套服裝,就比訂貨任務少生產100套;如果每天生產23套服裝,就可超過訂貨任務20套。那么,這批服裝的訂貨任務是多少套?()
A、760
B、1120
C、900
D、850
【答案】:答案:C
解析:由題意每天生產多出3套,總共就會多生產出120,那么計劃的天數為40天,所以這批服裝為20×40+100=900(套)。故選C。122、1,7,8,57,()
A、123
B、122
C、121
D、120
【答案】:答案:C
解析:12+7=8,72+8=57,82+57=121。故選C。123、5,7,4,6,4,6,()
A、4
B、5
C、6
D、7
【答案】:答案:B
解析:依次將相鄰兩個數中后一個數減去前一個數得2,-3,2,-2,2,奇數項是2,偶數項構成公差為1的等差數列,即所填數字為6+(-1)=5。故選B。124、-56,25,-2,7,4,()
A、3
B、-12
C、-24
D、5
【答案】:答案:D
解析:-56-25=-3×[25-(-2)],25-(-2)=-3×(-2-7),-2-7=-3×(7-4),第(N-1)項-第N項=-3[第N項-第(N+1)項](N≥2),即所填數字為4-=5。故選D。125、甲、乙兩位村民去縣城A商店買東西,他們同時在村口出發,甲騎車而乙步行,但他們又同時到達A商店。途中甲休息的時間是乙步行時間的5/6,而乙休息的時間是甲騎車時間的1/2,則甲、乙途中休息的時間比是()。
A、4:1
B、5:1
C、5:2
D、6:1
【答案】:答案:B
解析:設乙步行時間為6x,甲騎車時間為2y,則甲休息的時間為5x,乙休息的時間為y,則由“他們同時在村口出發,甲騎車而乙步行,但他們又同時到達A商店”可得:2y+5x=6x+y,解得x:y=1:1。因此,甲、乙途中休息的時間比是5x:y=5:1。故選B。126、甲乙兩車早上分別同時從A、B兩地出發駛向對方所在城市,在分別到達對方城市并各自花費1小時卸貨后,立刻出發以原速返回出發地。甲車的速度為60千米/小時,乙車的速度為40千米/小時,兩地之間相距480千米。問兩車第二次相遇距離兩車早上出發經過了多少個小時?()
A、13.4
B、14.4
C、15.4
D、16.4
【答案】:答案:C
解析:根據“分別同時從A.B兩地出發”、“兩車第二次相遇”,可知考查的是兩端出發的多次相遇問題,公式為(v1+v2)t=(2n-1)S。代入數據得(60+40)t=(2×2-1)×480,解得t=14.4,由“各自花費一小時卸貨”,故經過了14.4+1=15.4小時。故選C。127、某快速反應部隊運送救災物資到災區。飛機原計劃每分鐘飛行12千米,由于災情危急,飛行速度提高到每分鐘15千米,結果比原計劃提前30分鐘到達災區,則機場到災區的距離是多少千米?()
A、1600
B、1800
C、2050
D、2250
【答案】:答案:B
解析:設機場到災區的距離為x,由每分鐘飛行12千米可知,原飛行時間為;由每分鐘15千米可知,現飛行時間為。根據比原計劃提前30分鐘,可得,解得x=1800(千米)。故選B。128、要將濃度分別為20%和5%的A、B兩種食鹽水混合配成濃度為15%的食鹽水900克,問5%的食鹽水需要多少克?()
A、250
B、285
C、300
D、325
【答案】:答案:C
解析:設需要5%的食鹽水x克,則需要20%的食鹽水(900-x)克;根據混合后濃度為15%,得[x×5%+(900-x)×20%]=900×15%,解得x=300(克)。故選C。129、為幫助果農解決銷路,某企業年底買了一批水果,平均發給每部門若干筐之后還多了12筐,如果再買進8筐則每個部門可分得10筐,則這批水果共有()筐。
A、192
B、198
C、200
D、212
【答案】:答案:A
解析:由于再買進8筐則每個部門可分得10筐,則總筐數加8應能被10整除,排除B、C。將A項代入題目,可得部門數為(192+8)÷10=20(個),則原來平均發給每部門(192-12)÷20=9(筐),水果筐數為整數解,符合題意。故選A。130、甲、乙兩人在一條400米的環形跑道上從相距200米的位置出發,同向勻速跑步。當甲第三次追上乙的時候,乙跑了2000米。問甲的速度是乙的多少倍?()
A、1.2
B、1.5
C、1.6
D、2.0
【答案】:答案:B
解析:環形同點同向出發每追上一次,甲比乙多跑一圈。第一次由于是不同起點,甲比乙多跑原來的差距200米;之后兩次追上都多跑400米,甲一共比乙多跑200+400×2=1000(米)。乙跑了2000米,甲跑了3000米,時間相同,則速度比與路程比也相同,可知甲的速度是乙的3000÷2000=1.5倍。故選B。131、1,6,5,7,2,8,6,9,()
A、1
B、2
C、3
D、4
【答案】:答案:C
解析:本題為隔項遞推數列,存在關系:第三項=第二項-第一項,第五項=第四項-第三項,……因此未知項為9-6=3。故選C。132、甲、乙兩人在一條400米的環形跑道上從相距200米的位置出發,同向勻速跑步。當甲第三次追上乙的時候,乙跑了2000米。問甲的速度是乙的多少倍?()
A、1.2
B、1.5
C、1.6
D、2.0
【答案】:答案:B
解析:環形同點同向出發每追上一次,甲比乙多跑一圈。第一次由于是不同起點,甲比乙多跑原來的差距200米;之后兩次追上都多跑400米,甲一共比乙多跑200+400×2=1000(米)。乙跑了2000米,甲跑了3000米,時間相同,則速度比與路程比也相同,可知甲的速度是乙的3000÷2000=1.5倍。故選B。133、玉米的正常市場價格為每公斤1.86元到2.18元,近期某地玉米價格漲至每公斤2.68元。經測算,向市場每投放儲備玉米100噸,每公斤玉米價格下降0.05元。為穩定玉米價格,向該地投放儲備玉米的數量不能超過()。
A、800噸
B、1080噸
C、1360噸
D、1640噸
【答案】:答案:D
解析:要穩定玉米價格,玉米的價格必須調整至正常區間。所以最低下降為每公斤1.86元,即下降了2.68-1.86=0.82(元)。因為每投放100噸,價格下降0.05元,所以投放玉米的數量不能超過0.82÷0.05×100=1640(噸)。故選D。134、某商店花10000元進了一批商品,按期望獲得相當于進價25%的利潤來定價。結果只銷售了商品總量的30%。為盡快完成資金周轉,商店決定打折銷售,這樣賣完全部商品后,虧本1000元。問商店是按定價打幾折銷售的?()
A、九折
B、七五折
C、六折
D、四八折
【答案】:答案:C
解析:由只銷售了總量的30%知,打折前銷售額為10000×(1+25%)×30%=3750元;設此商品打x折出售,剩余商品打折后,銷售額為10000×(1+25%)×(1-30%)x=8750x。根據虧本1000元,可得3750+8750x-10000=﹣1000,解得x=0.6,即打六折。故選C。135、某飲料店有純果汁(即濃度為100%)10千克,濃度為30%的濃縮還原果汁20千克。若取純果汁、濃縮還原果汁各10千克倒入10千克純凈水中,再倒入10千克的濃縮還原果汁,則得到的果汁濃度為多少。()
A、40%
B、37.5%
C、35%
D、30%
【答案】:答案:A
解析:根據題干可得,一共倒入純果汁(即濃度為100%)10千克,純凈水10千克,濃度為30%的濃縮還原果汁20千克。可知最終溶液的量為10+10+20=40(千克),最終溶質為10+20×30%=16(千克)。則最終果汁濃度=16÷40×100%=40%。故選A。136、1,8,9,4,(),1/6
A、3
B、2
C、1
D、1/3
【答案】:答案:C
解析:1=14,8=23,9=32,4=41,1=50,1/6=6(-1)。故選C。137、一個人從家到公司,當他走到路程的一半的時候,速度下降了10%,問:他走完全程所用時間的前半段和后半段所走的路程比是()。
A、10:9
B、21:19
C、11:9
D、22:18
【答案】:答案:B
解析:設前半程速度為10,則后半程速度為9,路程總長為180,則前半程用時9,后半程用時10,總耗時19,一半為9.5。因此前半段時間走過的路程為90+9×(9.5-9)=94.5,后半段時間走過的路程為9×9.5=85.5。兩段路程之比為94.5:85.5=21:19。故選B。138、21,27,40,61,94,148,()
A、239
B、242
C、246
D、252
【答案】:答案:A
解析:依次將相鄰兩項作差得6,13,21,33,54;二次作差得7,8,12,21;再次作差得12,22,32,是連續自然數的平方。即所填數字為42+21+54+148=239。故選A。139、2,3,6,18,108,()
A、1944
B、1620
C、1296
D、1728
【答案】:答案:A
解析:2×3=6,3×6=18,6×18=108,……前兩項相乘等于下一項,則所求項為18×108,尾數為4。故選A。140、為了國防需要,A基地要運載1480噸的戰備物資到1100千米外的B基地?,F在A基地只有一架“運9”大型運輸機和一列“貨運列車”,“運9”速度550千米每小時,載重能力為20噸,“貨運列車”速度100千米每小時,運輸能力為600噸,那么這批戰備物資到達B基地的最短時間為:
A.53小時
B.54小時
C.55小時
D.56小時
【答案】:答案:B
解析:由題意可知,運輸機運輸一次往返需要2×(1100÷550)=4小時,單位時間運輸5噸;列車運輸一次往返需要2×(1100÷100)=22小時,單位時間運輸20+噸。要求運輸時間最短,那么必然要讓單位時間運輸量大的列車盡可能多地運輸。貨運列車運輸能力為600噸,運輸總量為1480噸,因此可推知貨運列車共運輸兩次,即噸。還剩1480-1200=280噸,需要運輸機運輸280÷20=14次。且第14次不用計算返回所用的時間,則最短時間為小時。故正確答案為B。141、10,9,17,50,()
A、100
B、99
C、199
D、200
【答案】:答案:C
解析:10×1-1=9;9×2-1=17;17×3-1=50;50×4-1=199。故選C。142、2,6,18,54,()
A、186
B、162
C、194
D、196
【答案】:答案:B
解析:該數列是以3為公比的等比數列,故空缺項為:54×3=162。故選B。143、4,12,8,10,()
A、6
B、8
C、9
D、24
【答案】:答案:C
解析:思路一:4-12=-812-8=48-10=-210-9=1,其中,-8、4、-2、1等比。思路二:(4+12)/2=8(12+8)/2=10(10+8)/2=/=9。故選C。144、為幫助果農解決銷路,某企業年底買了一批水果,平均發給
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 飲水安全協議合同
- 各種合同協議書模板下載
- 砍樹付款協議合同
- 課程退費協議合同
- 噴漆外發加工合同協議書
- 合同加附屬協議
- 共合協議合同
- 水窖合同協議
- 快艇維修協議合同
- 后勤維修協議合同
- 倫理與禮儀 知到智慧樹網課答案
- 公司電工外包協議書
- 房地產經紀人協理考試題庫全(附答案)
- 康養活動策劃方案
- DB11/1950-2021-公共建筑無障礙設計標準
- 2024年三門峽職業技術學院單招職業技能測試題庫及答案解析
- (正式版)SHT 3115-2024 石油化工管式爐輕質澆注料襯里工程技術規范
- 2024新生兒肺炎個案護理
- 2022版新課標核心素養關鍵詞解讀-運算能力主題研討與教學分享
- 2024年甘肅亞盛實業(集團)股份有限公司招聘筆試參考題庫含答案解析
- 防汛預案桌面演練(終)課件
評論
0/150
提交評論