山東省威海市名校2024年中考數(shù)學模試卷含解析_第1頁
山東省威海市名校2024年中考數(shù)學模試卷含解析_第2頁
山東省威海市名校2024年中考數(shù)學模試卷含解析_第3頁
山東省威海市名校2024年中考數(shù)學模試卷含解析_第4頁
山東省威海市名校2024年中考數(shù)學模試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

山東省威海市名校2024年中考數(shù)學模試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,?ABCD的對角線AC,BD相交于點O,E是AB中點,且AE+EO=4,則?ABCD的周長為()A.20B.16C.12D.82.如圖,已知的周長等于,則它的內(nèi)接正六邊形ABCDEF的面積是()A. B. C. D.3.如圖,菱形中,對角線AC、BD交于點O,E為AD邊中點,菱形ABCD的周長為28,則OE的長等于()A.3.5 B.4 C.7 D.144.某種超薄氣球表面的厚度約為,這個數(shù)用科學記數(shù)法表示為()A. B. C. D.5.如圖,是由7個大小相同的小正方體堆砌而成的幾何體,若從標有①、②、③、④的四個小正方體中取走一個后,余下幾何體與原幾何體的主視圖相同,則取走的正方體是()A.① B.② C.③ D.④6.若正六邊形的半徑長為4,則它的邊長等于()A.4 B.2 C. D.7.如圖是一個幾何體的三視圖,則這個幾何體是()A. B. C. D.8.下列運算正確的是()A.a(chǎn)3?a2=a6 B.(2a)3=6a3C.(a﹣b)2=a2﹣b2 D.3a2﹣a2=2a29.從邊長為的大正方形紙板中挖去一個邊長為的小正方形紙板后,將其裁成四個相同的等腰梯形(如圖甲),然后拼成一個平行四邊形(如圖乙)。那么通過計算兩個圖形陰影部分的面積,可以驗證成立的公式為()A. B.C. D.10.某學校組織藝術攝影展,上交的作品要求如下:七寸照片(長7英寸,寬5英寸);將照片貼在一張矩形襯紙的正中央,照片四周外露襯紙的寬度相同;矩形襯紙的面積為照片面積的3倍.設照片四周外露襯紙的寬度為x英寸(如圖),下面所列方程正確的是()A.(7+x)(5+x)×3=7×5 B.(7+x)(5+x)=3×7×5C.(7+2x)(5+2x)×3=7×5 D.(7+2x)(5+2x)=3×7×5二、填空題(共7小題,每小題3分,滿分21分)11.已知方程x2﹣5x+2=0的兩個解分別為x1、x2,則x1+x2﹣x1?x2的值為______.12.現(xiàn)有八個大小相同的矩形,可拼成如圖1、2所示的圖形,在拼圖2時,中間留下了一個邊長為2的小正方形,則每個小矩形的面積是_____.13.如圖,AB是⊙O的弦,∠OAB=30°.OC⊥OA,交AB于點C,若OC=6,則AB的長等于__.14.如圖,CD是Rt△ABC斜邊AB上的高,將△BCD沿CD折疊,B點恰好落在AB的中點E處,則∠A等于____度.15.因式分解:y3﹣16y=_____.16.拋物線y=x2﹣2x+3的對稱軸是直線_____.17.某校“百變魔方”社團為組織同學們參加學校科技節(jié)的“最強大腦”大賽,準備購買A,B兩款魔方.社長發(fā)現(xiàn)若購買2個A款魔方和6個B款魔方共需170元,購買3個A款魔方和購買8個B款魔方所需費用相同.求每款魔方的單價.設A款魔方的單價為x元,B款魔方的單價為y元,依題意可列方程組為_______.三、解答題(共7小題,滿分69分)18.(10分)[閱讀]我們定義:如果三角形有一邊上的中線長恰好等于這邊的長,那么稱這個三角形為“中邊三角形”,把這條邊和其邊上的中線稱為“對應邊”.[理解]如圖1,Rt△ABC是“中邊三角形”,∠C=90°,AC和BD是“對應邊”,求tanA的值;[探究]如圖2,已知菱形ABCD的邊長為a,∠ABC=2β,點P,Q從點A同時出發(fā),以相同速度分別沿折線AB﹣BC和AD﹣DC向終點C運動,記點P經(jīng)過的路程為s.當β=45°時,若△APQ是“中邊三角形”,試求的值.19.(5分)如圖,在Rt△ABC中,AB=AC,D、E是斜邊BC上的兩點,∠EAD=45°,將△ADC繞點A順時針旋轉(zhuǎn)90°,得到△AFB,連接EF.求證:EF=ED;若AB=2,CD=1,求FE的長.20.(8分)計算:|﹣1|+﹣(1﹣)0﹣()﹣1.21.(10分)如圖,兩座建筑物的水平距離為.從點測得點的仰角為53°,從點測得點的俯角為37°,求兩座建筑物的高度(參考數(shù)據(jù):22.(10分)一艘觀光游船從港口A以北偏東60°的方向出港觀光,航行80海里至C處時發(fā)生了側(cè)翻沉船事故,立即發(fā)出了求救信號,一艘在港口正東方向的海警船接到求救信號,測得事故船在它的北偏東37°方向,馬上以40海里每小時的速度前往救援,求海警船到大事故船C處所需的大約時間.(溫馨提示:sin53°≈0.8,cos53°≈0.6)23.(12分)閱讀下列材料:題目:如圖,在△ABC中,已知∠A(∠A<45°),∠C=90°,AB=1,請用sinA、cosA表示sin2A.24.(14分)如圖,在△ABC中,AB=AC,∠BAC=90°,M是BC的中點,延長AM到點D,AE=AD,∠EAD=90°,CE交AB于點F,CD=DF.(1)∠CAD=______度;(2)求∠CDF的度數(shù);(3)用等式表示線段CD和CE之間的數(shù)量關系,并證明.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】

首先證明:OE=12【詳解】∵四邊形ABCD是平行四邊形,∴OA=OC,∵AE=EB,∴OE=12∵AE+EO=4,∴2AE+2EO=8,∴AB+BC=8,∴平行四邊形ABCD的周長=2×8=16,故選:B.【點睛】本題考查平行四邊形的性質(zhì)、三角形的中位線定理等知識,解題的關鍵是熟練掌握三角形的中位線定理,屬于中考常考題型.2、C【解析】

過點O作OH⊥AB于點H,連接OA,OB,由⊙O的周長等于6πcm,可得⊙O的半徑,又由圓的內(nèi)接多邊形的性質(zhì)可得∠AOB=60°,即可證明△AOB是等邊三角形,根據(jù)等邊三角形的性質(zhì)可求出OH的長,根據(jù)S正六邊形ABCDEF=6S△OAB即可得出答案.【詳解】過點O作OH⊥AB于點H,連接OA,OB,設⊙O的半徑為r,∵⊙O的周長等于6πcm,∴2πr=6π,解得:r=3,∴⊙O的半徑為3cm,即OA=3cm,∵六邊形ABCDEF是正六邊形,∴∠AOB=×360°=60°,OA=OB,∴△OAB是等邊三角形,∴AB=OA=3cm,∵OH⊥AB,∴AH=AB,∴AB=OA=3cm,∴AH=cm,OH==cm,∴S正六邊形ABCDEF=6S△OAB=6××3×=(cm2).故選C.【點睛】此題考查了正多邊形與圓的性質(zhì).此題難度適中,注意掌握數(shù)形結(jié)合思想的應用.3、A【解析】

根據(jù)菱形的四條邊都相等求出AB,再根據(jù)菱形的對角線互相平分可得OB=OD,然后判斷出OE是△ABD的中位線,再根據(jù)三角形的中位線平行于第三邊并且等于第三邊的一半求解即可.【詳解】解:∵菱形ABCD的周長為28,∴AB=28÷4=7,OB=OD,∵E為AD邊中點,∴OE是△ABD的中位線,∴OE=AB=×7=3.1.故選:A.【點睛】本題考查了菱形的性質(zhì),三角形的中位線平行于第三邊并且等于第三邊的一半,熟記性質(zhì)與定理是解題的關鍵.4、A【解析】

絕對值小于1的正數(shù)也可以利用科學記數(shù)法表示,一般形式為,與較大數(shù)的科學記數(shù)法不同的是其所使用的是負指數(shù)冪,指數(shù)由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.【詳解】,故選:A.【點睛】本題考查了用科學記數(shù)法表示較小的數(shù),一般形式為,其中,n為由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.5、A【解析】

根據(jù)題意得到原幾何體的主視圖,結(jié)合主視圖選擇.【詳解】解:原幾何體的主視圖是:.視圖中每一個閉合的線框都表示物體上的一個平面,左側(cè)的圖形只需要兩個正方體疊加即可.故取走的正方體是①.故選A.【點睛】本題考查了簡單組合體的三視圖,中等難度,作出幾何體的主視圖是解題關鍵.6、A【解析】試題分析:正六邊形的中心角為360°÷6=60°,那么外接圓的半徑和正六邊形的邊長將組成一個等邊三角形,故正六邊形的半徑等于1,則正六邊形的邊長是1.故選A.考點:正多邊形和圓.7、B【解析】試題分析:結(jié)合三個視圖發(fā)現(xiàn),應該是由一個正方體在一個角上挖去一個小正方體,且小正方體的位置應該在右上角,故選B.考點:由三視圖判斷幾何體.8、D【解析】試題分析:根據(jù)同底數(shù)冪相乘,底數(shù)不變指數(shù)相加求解求解;根據(jù)積的乘方,等于把積的每一個因式分別乘方,再把所得的冪相乘求解;根據(jù)完全平方公式求解;根據(jù)合并同類項法則求解.解:A、a3?a2=a3+2=a5,故A錯誤;B、(2a)3=8a3,故B錯誤;C、(a﹣b)2=a2﹣2ab+b2,故C錯誤;D、3a2﹣a2=2a2,故D正確.故選D.點評:本題考查了完全平方公式,合并同類項法則,同底數(shù)冪的乘法,積的乘方的性質(zhì),熟記性質(zhì)與公式并理清指數(shù)的變化是解題的關鍵.9、D【解析】

分別根據(jù)正方形及平行四邊形的面積公式求得甲、乙中陰影部分的面積,從而得到可以驗證成立的公式.【詳解】陰影部分的面積相等,即甲的面積=a2﹣b2,乙的面積=(a+b)(a﹣b).即:a2﹣b2=(a+b)(a﹣b).所以驗證成立的公式為:a2﹣b2=(a+b)(a﹣b).故選:D.【點睛】考點:等腰梯形的性質(zhì);平方差公式的幾何背景;平行四邊形的性質(zhì).10、D【解析】試題分析:由題意得;如圖知;矩形的長="7+2x"寬=5+2x∴矩形襯底的面積=3倍的照片的面積,可得方程為(7+2X)(5+2X)=3×7×5考點:列方程點評:找到題中的等量關系,根據(jù)兩個矩形的面積3倍的關系得到方程,注意的是矩形的間距都為等量的,從而得到大矩形的長于寬,用未知數(shù)x的代數(shù)式表示,而列出方程,屬于基礎題.二、填空題(共7小題,每小題3分,滿分21分)11、1【解析】解:根據(jù)題意可得x1+x2==5,x1x2==2,∴x1+x2﹣x1x2=5﹣2=1.故答案為:1.點睛:本題主要考查了根據(jù)與系數(shù)的關系,利用一元二次方程的兩個根x1、x2具有這樣的關系:x1+x2=,x1x2=是解題的關鍵.12、1.【解析】

設小矩形的長為x,寬為y,則由圖1可得5y=3x;由圖2可知2y-x=2.【詳解】解:設小矩形的長為x,寬為y,則可列出方程組,,解得,則小矩形的面積為6×10=1.【點睛】本題考查了二元一次方程組的應用.13、18【解析】連接OB,∵OA=OB,∴∠B=∠A=30°,∵∠COA=90°,∴AC=2OC=2×6=12,∠ACO=60°,∵∠ACO=∠B+∠BOC,∴∠BOC=∠ACO-∠B=30°,∴∠BOC=∠B,∴CB=OC=6,∴AB=AC+BC=18,故答案為18.14、30【解析】試題分析:根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得:AE=CE,根據(jù)折疊可得:BC=CE,則BC=AE=BE=AB,則∠A=30°.考點:折疊圖形的性質(zhì)15、y(y+4)(y﹣4)【解析】試題解析:原式故答案為點睛:提取公因式法和公式法相結(jié)合因式分解.16、x=1【解析】

把解析式化為頂點式可求得答案.【詳解】解:∵y=x2-2x+3=(x-1)2+2,∴對稱軸是直線x=1,故答案為x=1.【點睛】本題主要考查二次函數(shù)的性質(zhì),掌握二次函數(shù)的頂點式是解題的關鍵,即在y=a(x-h)2+k中,對稱軸為x=h,頂點坐標為(h,k).17、【解析】分析:設A款魔方的單價為x元,B魔方單價為y元,根據(jù)“購買兩個A款魔方和6個B款魔方共需170元,購買3個A款魔方和購買8個B款魔方所需費用相同”,即可得出關于x,y的二元一次方程組,此題得解.解:設A魔方的單價為x元,B款魔方的單價為y元,根據(jù)題意得:故答案為點睛:本題考查了二元一次方程組的應用,找準等量關系,正確列出二元一次方程組是解題的關鍵.三、解答題(共7小題,滿分69分)18、tanA=;綜上所述,當β=45°時,若△APQ是“中邊三角形”,的值為或.【解析】

(1)由AC和BD是“對應邊”,可得AC=BD,設AC=2x,則CD=x,BD=2x,可得∴BC=x,可得tanA===(2)當點P在BC上時,連接AC,交PQ于點E,延長AB交QP的延長線于點F,可得AC是QP的垂直平分線.可求得△AEF∽△CEP,=,分兩種情況:當?shù)走匬Q與它的中線AE相等,即AE=PQ時,==,∴=;當腰AP與它的中線QM相等時,即AP=QM時,QM=AQ,(3)作QN⊥AP于N,可得tan∠APQ===,tan∠APE===,∴=,【詳解】解:[理解]∵AC和BD是“對應邊”,∴AC=BD,設AC=2x,則CD=x,BD=2x,∵∠C=90°,∴BC===x,∴tanA===;[探究]若β=45°,當點P在AB上時,△APQ是等腰直角三角形,不可能是“中邊三角形”,如圖2,當點P在BC上時,連接AC,交PQ于點E,延長AB交QP的延長線于點F,∵PC=QC,∠ACB=∠ACD,∴AC是QP的垂直平分線,∴AP=AQ,∵∠CAB=∠ACP,∠AEF=∠CEP,∴△AEF∽△CEP,∴===,∵PE=CE,∴=,分兩種情況:當?shù)走匬Q與它的中線AE相等,即AE=PQ時,==,∴=;當腰AP與它的中線QM相等時,即AP=QM時,QM=AQ,如圖3,作QN⊥AP于N,∴MN=AN=PM=QM,∴QN=MN,∴ntan∠APQ===,∴ta∠APE===,∴=,綜上所述,當β=45°時,若△APQ是“中邊三角形”,的值為或.【點睛】本題是一道相似形綜合運用的試題,考查了相似三角形的判定及性質(zhì)的運用,勾股定理的運用,等腰直角三角形的性質(zhì)的運用,等腰三角形的性質(zhì)的運用,銳角三角形函數(shù)值的運用,解答時靈活運用三角函數(shù)值建立方程求解是解答的關鍵.19、(1)見解析;(2)EF=.【解析】

(1)由旋轉(zhuǎn)的性質(zhì)可求∠FAE=∠DAE=45°,即可證△AEF≌△AED,可得EF=ED;(2)由旋轉(zhuǎn)的性質(zhì)可證∠FBE=90°,利用勾股定理和方程的思想可求EF的長.【詳解】(1)∵∠BAC=90°,∠EAD=45°,∴∠BAE+∠DAC=45°,∵將△ADC繞點A順時針旋轉(zhuǎn)90°,得到△AFB,∴∠BAF=∠DAC,AF=AD,CD=BF,∠ABF=∠ACD=45°,∴∠BAF+∠BAE=45°=∠FAE,∴∠FAE=∠DAE,AD=AF,AE=AE,∴△AEF≌△AED(SAS),∴DE=EF(2)∵AB=AC=2,∠BAC=90°,∴BC=4,∵CD=1,∴BF=1,BD=3,即BE+DE=3,∵∠ABF=∠ABC=45°,∴∠EBF=90°,∴BF2+BE2=EF2,∴1+(3﹣EF)2=EF2,∴EF=【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),等腰直角三角形的性質(zhì),全等三角形的判定和性質(zhì),勾股定理等知識,利用方程的思想解決問題是本題的關鍵.20、1【解析】試題分析:先分別計算絕對值,算術平方根,零指數(shù)冪和負指數(shù)冪,然后相加即可.試題解析:解:|﹣1|+﹣(1﹣)0﹣()﹣1=1+3﹣1﹣2=1.點睛:本題考查了實數(shù)的計算,熟悉計算的順序和相關的法則是解決此題的關鍵.21、建筑物的高度為.建筑物的高度為.【解析】分析:過點D作DE⊥AB于于E,則DE=BC=60m.在Rt△ABC中,求出AB.在Rt△ADE中求出AE即可解決問題.詳解:過點D作DE⊥AB于于E,則DE=BC=60m,在Rt△ABC中,tan53°==,∴AB=80(m).在Rt△ADE中,tan37°==,∴AE=45(m),∴BE=CD=AB﹣AE=35(m).答:兩座建筑物的高度分別為80m和35m.點睛:本題考查的是解直角三角形的應用﹣仰角俯角問題,根據(jù)題意作出輔助線,構(gòu)造出直角三角形是解答此題的關鍵.22、小時【解析】

過點C作CD⊥AB交AB延長線于D.先解Rt△ACD得出CD=AC=40海里,再解Rt△CBD中,得出BC=≈50,然后根據(jù)時間=路程÷速度即可求出海警船到大事故船C處所需的時間.【詳解】解:如圖,過點C作CD⊥AB交AB延長線于D.在Rt△ACD中,∵∠ADC=90°,∠CAD=30°,AC=80海里,∴CD=AC=40海里.在Rt△CBD中,∵∠CDB=90°,∠CBD=90°﹣37°=53°,∴BC=≈=50(海里),∴海警船到大事故船C處所需的時間大約為:50÷40=(小時).考點:解直角三角形的應用-方向角問題23、sin2A=2cosAsinA【解析】

先作出直角

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論