2024屆福建省福州文博中學高三第三次模擬考試數學試卷含解析_第1頁
2024屆福建省福州文博中學高三第三次模擬考試數學試卷含解析_第2頁
2024屆福建省福州文博中學高三第三次模擬考試數學試卷含解析_第3頁
2024屆福建省福州文博中學高三第三次模擬考試數學試卷含解析_第4頁
2024屆福建省福州文博中學高三第三次模擬考試數學試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆福建省福州文博中學高三第三次模擬考試數學試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知三棱錐的四個頂點都在球的球面上,平面,是邊長為的等邊三角形,若球的表面積為,則直線與平面所成角的正切值為()A. B. C. D.2.已知定義在上的奇函數和偶函數滿足(且),若,則函數的單調遞增區間為()A. B. C. D.3.根據散點圖,對兩個具有非線性關系的相關變量x,y進行回歸分析,設u=lny,v=(x-4)2,利用最小二乘法,得到線性回歸方程為=0.5v+2,則變量y的最大值的估計值是()A.e B.e2 C.ln2 D.2ln24.已知函數,若關于的方程有4個不同的實數根,則實數的取值范圍為()A. B. C. D.5.某工廠只生產口罩、抽紙和棉簽,如圖是該工廠年至年各產量的百分比堆積圖(例如:年該工廠口罩、抽紙、棉簽產量分別占、、),根據該圖,以下結論一定正確的是()A.年該工廠的棉簽產量最少B.這三年中每年抽紙的產量相差不明顯C.三年累計下來產量最多的是口罩D.口罩的產量逐年增加6.已知是虛數單位,則復數()A. B. C.2 D.7.已知三棱錐的體積為2,是邊長為2的等邊三角形,且三棱錐的外接球的球心恰好是中點,則球的表面積為()A. B. C. D.8.已知拋物線上一點到焦點的距離為,分別為拋物線與圓上的動點,則的最小值為()A. B. C. D.9.設復數滿足,則()A.1 B.-1 C. D.10.已知定義在上函數的圖象關于原點對稱,且,若,則()A.0 B.1 C.673 D.67411.已知,則的值等于()A. B. C. D.12.已知復數滿足,則=()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.平面區域的外接圓的方程是____________.14.如圖,是一個四棱錐的平面展開圖,其中間是邊長為的正方形,上面三角形是等邊三角形,左、右三角形是等腰直角三角形,則此四棱錐的體積為_____.15.如圖,的外接圓半徑為,為邊上一點,且,,則的面積為______.16.若,則__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某調查機構為了了解某產品年產量x(噸)對價格y(千克/噸)和利潤z的影響,對近五年該產品的年產量和價格統計如下表:x12345y17.016.515.513.812.2(1)求y關于x的線性回歸方程;(2)若每噸該產品的成本為12千元,假設該產品可全部賣出,預測當年產量為多少時,年利潤w取到最大值?參考公式:18.(12分)在直角坐標系中,已知曲線的參數方程為(為參數),以坐標原點為極點,軸的正半軸為極軸,建立極坐標系,直線的極坐標方程為.(1)求曲線的普通方程和直線的直角坐標方程;(2)若射線的極坐標方程為().設與相交于點,與相交于點,求.19.(12分)已知正實數滿足.(1)求的最小值.(2)證明:20.(12分)如圖,在三棱錐中,,,側面為等邊三角形,側棱.(1)求證:平面平面;(2)求三棱錐外接球的體積.21.(12分)如圖,四棱錐中,側面為等腰直角三角形,平面.(1)求證:平面;(2)求直線與平面所成的角的正弦值.22.(10分)已知函數.(1)討論的零點個數;(2)證明:當時,.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

設為中點,先證明平面,得出為所求角,利用勾股定理計算,得出結論.【詳解】設分別是的中點平面是等邊三角形又平面為與平面所成的角是邊長為的等邊三角形,且為所在截面圓的圓心球的表面積為球的半徑平面本題正確選項:【點睛】本題考查了棱錐與外接球的位置關系問題,關鍵是能夠通過垂直關系得到直線與平面所求角,再利用球心位置來求解出線段長,屬于中檔題.2、D【解析】

根據函數的奇偶性用方程法求出的解析式,進而求出,再根據復合函數的單調性,即可求出結論.【詳解】依題意有,①,②①②得,又因為,所以,在上單調遞增,所以函數的單調遞增區間為.故選:D.【點睛】本題考查求函數的解析式、函數的性質,要熟記復合函數單調性判斷方法,屬于中檔題.3、B【解析】

將u=lny,v=(x-4)2代入線性回歸方程=-0.5v+2,利用指數函數和二次函數的性質可得最大估計值.【詳解】解:將u=lny,v=(x4)2代入線性回歸方程=0.5v+2得:,即,當時,取到最大值2,因為在上單調遞增,則取到最大值.故選:B.【點睛】本題考查了非線性相關的二次擬合問題,考查復合型指數函數的最值,是基礎題,.4、C【解析】

求導,先求出在單增,在單減,且知設,則方程有4個不同的實數根等價于方程在上有兩個不同的實數根,再利用一元二次方程根的分布條件列不等式組求解可得.【詳解】依題意,,令,解得,,故當時,,當,,且,故方程在上有兩個不同的實數根,故,解得.故選:C.【點睛】本題考查確定函數零點或方程根個數.其方法:(1)構造法:構造函數(易求,可解),轉化為確定的零點個數問題求解,利用導數研究該函數的單調性、極值,并確定定義區間端點值的符號(或變化趨勢)等,畫出的圖象草圖,數形結合求解;(2)定理法:先用零點存在性定理判斷函數在某區間上有零點,然后利用導數研究函數的單調性、極值(最值)及區間端點值符號,進而判斷函數在該區間上零點的個數.5、C【解析】

根據該廠每年產量未知可判斷A、B、D選項的正誤,根據每年口罩在該廠的產量中所占的比重最大可判斷C選項的正誤.綜合可得出結論.【詳解】由于該工廠年至年的產量未知,所以,從年至年棉簽產量、抽紙產量以及口罩產量的變化無法比較,故A、B、D選項錯誤;由堆積圖可知,從年至年,該工廠生產的口罩占該工廠的總產量的比重是最大的,則三年累計下來產量最多的是口罩,C選項正確.故選:C.【點睛】本題考查堆積圖的應用,考查數據處理能力,屬于基礎題.6、A【解析】

根據復數的基本運算求解即可.【詳解】.故選:A【點睛】本題主要考查了復數的基本運算,屬于基礎題.7、A【解析】

根據是中點這一條件,將棱錐的高轉化為球心到平面的距離,即可用勾股定理求解.【詳解】解:設點到平面的距離為,因為是中點,所以到平面的距離為,三棱錐的體積,解得,作平面,垂足為的外心,所以,且,所以在中,,此為球的半徑,.故選:A.【點睛】本題考查球的表面積,考查點到平面的距離,屬于中檔題.8、D【解析】

利用拋物線的定義,求得p的值,由利用兩點間距離公式求得,根據二次函數的性質,求得,由取得最小值為,求得結果.【詳解】由拋物線焦點在軸上,準線方程,則點到焦點的距離為,則,所以拋物線方程:,設,圓,圓心為,半徑為1,則,當時,取得最小值,最小值為,故選D.【點睛】該題考查的是有關距離的最小值問題,涉及到的知識點有拋物線的定義,點到圓上的點的距離的最小值為其到圓心的距離減半徑,二次函數的最小值,屬于中檔題目.9、B【解析】

利用復數的四則運算即可求解.【詳解】由.故選:B【點睛】本題考查了復數的四則運算,需掌握復數的運算法則,屬于基礎題.10、B【解析】

由題知為奇函數,且可得函數的周期為3,分別求出知函數在一個周期內的和是0,利用函數周期性對所求式子進行化簡可得.【詳解】因為為奇函數,故;因為,故,可知函數的周期為3;在中,令,故,故函數在一個周期內的函數值和為0,故.故選:B.【點睛】本題考查函數奇偶性與周期性綜合問題.其解題思路:函數的奇偶性與周期性相結合的問題多考查求值問題,常利用奇偶性及周期性進行變換,將所求函數值的自變量轉化到已知解析式的函數定義域內求解.11、A【解析】

由余弦公式的二倍角可得,,再由誘導公式有,所以【詳解】∵∴由余弦公式的二倍角展開式有又∵∴故選:A【點睛】本題考查了學生對二倍角公式的應用,要求學生熟練掌握三角函數中的誘導公式,屬于簡單題12、B【解析】

利用復數的代數運算法則化簡即可得到結論.【詳解】由,得,所以,.故選:B.【點睛】本題考查復數代數形式的乘除運算,考查復數的基本概念,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

作出平面區域,可知平面區域為三角形,求出三角形的三個頂點坐標,設三角形的外接圓方程為,將三角形三個頂點坐標代入圓的一般方程,求出、、的值,即可得出所求圓的方程.【詳解】作出不等式組所表示的平面區域如下圖所示:由圖可知,平面區域為,聯立,解得,則點,同理可得點、,設的外接圓方程為,由題意可得,解得,,,因此,所求圓的方程為.故答案為:.【點睛】本題考查三角形外接圓方程的求解,同時也考查了一元二次不等式組所表示的平面區域的求作,考查數形結合思想以及運算求解能力,屬于中等題.14、【解析】

畫圖直觀圖可得該幾何體為棱錐,再計算高求解體積即可.【詳解】解:如圖,是一個四棱錐的平面展開圖,其中間是邊長為的正方形,上面三角形是等邊三角形,左、右三角形是等腰直角三角形,此四棱錐中,是邊長為的正方形,是邊長為的等邊三角形,故,又,故平面平面,的高是四棱錐的高,此四棱錐的體積為:.故答案為:.【點睛】本題主要考查了四棱錐中的長度計算以及垂直的判定和體積計算等,需要根據題意15、【解析】

先由正弦定理得到,再在三角形ABD、ADC中分別由正弦定理進一步得到B=C,最后利用面積公式計算即可.【詳解】依題意可得,由正弦定理得,即,由圖可知是鈍角,所以,,在三角形ABD中,,,在三角形ADC中,由正弦定理得即,所以,,故,,,故的面積為.故答案為:.【點睛】本題考查正弦定理解三角形,考查學生的基本計算能力,要靈活運用正弦定理公式及三角形面積公式,本題屬于中檔題.16、【解析】

因為,由二倍角公式得到,故得到.故答案為.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)當時,年利潤最大.【解析】

(1)方法一:令,先求得關于的回歸直線方程,由此求得關于的回歸直線方程.方法二:根據回歸直線方程計算公式,計算出回歸直線方程.方法一的好處在計算的數值較小.(2)求得w的表達式,根據二次函數的性質作出預測.【詳解】(1)方法一:取,則得與的數據關系如下123457.06.55.53.82.2,,,.,,關于的線性回歸方程是即,故關于的線性回歸方程是.方法二:因為,,,,,所以,故關于的線性回歸方程是,(2)年利潤,根據二次函數的性質可知:當時,年利潤最大.【點睛】本小題主要考查回歸直線方程的求法,考查利用回歸直線方程進行預測,考查運算求解能力,屬于中檔題.18、(1)曲線的普通方程為;直線的直角坐標方程為(2)【解析】

(1)利用消去參數,將曲線的參數方程化成普通方程,利用互化公式,將直線的極坐標方程化為直角坐標方程;(2)根據(1)求出曲線的極坐標方程,分別聯立射線與曲線以及射線與直線的極坐標方程,求出和,即可求出.【詳解】解:(1)因為(為參數),所以消去參數,得,所以曲線的普通方程為.因為所以直線的直角坐標方程為.(2)曲線的極坐標方程為.設的極徑分別為和,將()代入,解得,將()代入,解得.故.【點睛】本題考查利用消參法將參數方程化成普通方程以及利用互化公式將極坐標方程化為直角坐標方程,還考查極徑的運用和兩點間距離,屬于中檔題.19、(1);(2)見解析【解析】

(1)利用乘“1”法,結合基本不等式求得結果.(2)直接利用基本不等式及乘“1”法,證明即可.【詳解】(1)因為,所以因為,所以(當且僅當,即時等號成立),所以(2)證明:因為,所以故(當且僅當時,等號成立)【點睛】本題考查了基本不等式的應用,考查了乘“1”法的技巧,考查了推理論證能力,屬于中檔題.20、(1)見解析;(2).【解析】

(1)設中點為,連接、,利用等腰三角形三線合一的性質得出,利用勾股定理得出,由線面垂直的判定定理可證得平面,再利用面面垂直的判定定理可得出平面平面;(2)先確定三棱錐的外接球球心的位置,利用三角形相似求出外接球的半徑,再由球體的體積公式可求得結果.【詳解】(1)設中點為,連接、,因為,所以.又,所以,又由已知,,則,所以,.又為正三角形,且,所以,因為,所以,,,平面,又平面,平面平面;(2)由于是底面直角三角形的斜邊的中點,所以點是的外心,由(1)知平面,所以三棱錐的外接球的球心在上.在中,的垂直平分線與的交點即為球心,記的中點為點,則.由與相似可得,所以.所以三棱錐外接球的體積為.【點睛】本題考查面面垂直的證明,同時也考查了三棱錐外接球體積的計算,找出外接球球心的位置是解答的關鍵,考查推理能力與計算能力,屬于中等題.21、(1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論