2024屆黑龍江省齊齊哈爾市龍江縣重點(diǎn)中學(xué)中考數(shù)學(xué)押題試卷含解析_第1頁
2024屆黑龍江省齊齊哈爾市龍江縣重點(diǎn)中學(xué)中考數(shù)學(xué)押題試卷含解析_第2頁
2024屆黑龍江省齊齊哈爾市龍江縣重點(diǎn)中學(xué)中考數(shù)學(xué)押題試卷含解析_第3頁
2024屆黑龍江省齊齊哈爾市龍江縣重點(diǎn)中學(xué)中考數(shù)學(xué)押題試卷含解析_第4頁
2024屆黑龍江省齊齊哈爾市龍江縣重點(diǎn)中學(xué)中考數(shù)學(xué)押題試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2024屆黑龍江省齊齊哈爾市龍江縣重點(diǎn)中學(xué)中考數(shù)學(xué)押題試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.如圖1,等邊△ABC的邊長(zhǎng)為3,分別以頂點(diǎn)B、A、C為圓心,BA長(zhǎng)為半徑作弧AC、弧CB、弧BA,我們把這三條弧所組成的圖形稱作萊洛三角形,顯然萊洛三角形仍然是軸對(duì)稱圖形.設(shè)點(diǎn)I為對(duì)稱軸的交點(diǎn),如圖2,將這個(gè)圖形的頂點(diǎn)A與等邊△DEF的頂點(diǎn)D重合,且AB⊥DE,DE=2π,將它沿等邊△DEF的邊作無滑動(dòng)的滾動(dòng),當(dāng)它第一次回到起始位置時(shí),這個(gè)圖形在運(yùn)動(dòng)中掃過區(qū)域面積是()A.18π B.27π C.π D.45π2.下面運(yùn)算正確的是()A. B.(2a)2=2a2 C.x2+x2=x4 D.|a|=|﹣a|3.下列函數(shù)中,二次函數(shù)是()A.y=﹣4x+5 B.y=x(2x﹣3)C.y=(x+4)2﹣x2 D.y=4.如圖是由若干個(gè)小正方體塊搭成的幾何體的俯視圖,小正方塊中的數(shù)字表示在該位置的小正方體塊的個(gè)數(shù),那么這個(gè)幾何體的主視圖是()A. B. C. D.5.如圖,已知點(diǎn)A(0,1),B(0,﹣1),以點(diǎn)A為圓心,AB為半徑作圓,交x軸的正半軸于點(diǎn)C,則∠BAC等于()A.90° B.120° C.60° D.30°6.一、單選題如圖,△ABC中,AD是BC邊上的高,AE、BF分別是∠BAC、∠ABC的平分線,∠BAC=50°,∠ABC=60°,則∠EAD+∠ACD=()A.75° B.80° C.85° D.90°7.方程2x2﹣x﹣3=0的兩個(gè)根為()A.x1=,x2=﹣1 B.x1=﹣,x2=1 C.x1=,x2=﹣3 D.x1=﹣,x2=38.如圖,O是坐標(biāo)原點(diǎn),菱形OABC的頂點(diǎn)A的坐標(biāo)為(3,﹣4),頂點(diǎn)C在x軸的正半軸上,函數(shù)y=(k<0)的圖象經(jīng)過點(diǎn)B,則k的值為()A.﹣12 B.﹣32 C.32 D.﹣369.小張同學(xué)制作了四張材質(zhì)和外觀完全一樣的書簽,每個(gè)書簽上寫著一本書的名稱或一個(gè)作者姓名,分別是:《西游記》、施耐庵、《安徒生童話》、安徒生,從這四張書簽中隨機(jī)抽取兩張,則抽到的書簽正好是相對(duì)應(yīng)的書名和作者姓名的概率是()A. B. C. D.10.如圖,正六邊形ABCDEF內(nèi)接于⊙O,半徑為4,則這個(gè)正六邊形的邊心距OM的長(zhǎng)為()A.2 B.2 C. D.4二、填空題(共7小題,每小題3分,滿分21分)11.計(jì)算的結(jié)果等于__________.12.甲乙兩地9月上旬的日平均氣溫如圖所示,則甲乙兩地這10天日平均氣溫方差大小關(guān)系為________.(填“>”或“<”)13.如圖,點(diǎn)A,B是反比例函數(shù)y=(x>0)圖象上的兩點(diǎn),過點(diǎn)A,B分別作AC⊥x軸于點(diǎn)C,BD⊥x軸于點(diǎn)D,連接OA,BC,已知點(diǎn)C(2,0),BD=2,S△BCD=3,則S△AOC=__.14.如圖,一艘海輪位于燈塔P的北偏東方向60°,距離燈塔為4海里的點(diǎn)A處,如果海輪沿正南方向航行到燈塔的正東位置,海輪航行的距離AB長(zhǎng)_____海里.15.若圓錐的地面半徑為,側(cè)面積為,則圓錐的母線是__________.16.用配方法解方程3x2﹣6x+1=0,則方程可變形為(x﹣__)2=__.17.因式分解:a2﹣a=_____.三、解答題(共7小題,滿分69分)18.(10分)已知線段a及如圖形狀的圖案.(1)用直尺和圓規(guī)作出圖中的圖案,要求所作圖案中圓的半徑為a(保留作圖痕跡)(2)當(dāng)a=6時(shí),求圖案中陰影部分正六邊形的面積.19.(5分)(1)計(jì)算:sin45°(2)解不等式組:20.(8分)如圖,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于點(diǎn)E,點(diǎn)D在AB上,DE⊥EB.(1)求證:AC是△BDE的外接圓的切線;(2)若AD=23,AE=6,求EC的長(zhǎng).21.(10分)問題提出(1)如圖1,正方形ABCD的對(duì)角線交于點(diǎn)O,△CDE是邊長(zhǎng)為6的等邊三角形,則O、E之間的距離為;問題探究(2)如圖2,在邊長(zhǎng)為6的正方形ABCD中,以CD為直徑作半圓O,點(diǎn)P為弧CD上一動(dòng)點(diǎn),求A、P之間的最大距離;問題解決(3)窯洞是我省陜北農(nóng)村的主要建筑,窯洞賓館更是一道靚麗的風(fēng)景線,是因?yàn)楦G洞除了它的堅(jiān)固性及特有的外在美之外,還具有冬暖夏涼的天然優(yōu)點(diǎn)家住延安農(nóng)村的一對(duì)即將參加中考的雙胞胎小寶和小貝兩兄弟,發(fā)現(xiàn)自家的窯洞(如圖3所示)的門窗是由矩形ABCD及弓形AMD組成,AB=2m,BC=3.2m,弓高M(jìn)N=1.2m(N為AD的中點(diǎn),MN⊥AD),小寶說,門角B到門窗弓形弧AD的最大距離是B、M之間的距離.小貝說這不是最大的距離,你認(rèn)為誰的說法正確?請(qǐng)通過計(jì)算求出門角B到門窗弓形弧AD的最大距離.22.(10分)某商城銷售A,B兩種自行車型自行車售價(jià)為2

100元輛,B型自行車售價(jià)為1

750元輛,每輛A型自行車的進(jìn)價(jià)比每輛B型自行車的進(jìn)價(jià)多400元,商城用80

000元購(gòu)進(jìn)A型自行車的數(shù)量與用64

000元購(gòu)進(jìn)B型自行車的數(shù)量相等.求每輛A,B兩種自行車的進(jìn)價(jià)分別是多少?現(xiàn)在商城準(zhǔn)備一次購(gòu)進(jìn)這兩種自行車共100輛,設(shè)購(gòu)進(jìn)A型自行車m輛,這100輛自行車的銷售總利潤(rùn)為y元,要求購(gòu)進(jìn)B型自行車數(shù)量不超過A型自行車數(shù)量的2倍,總利潤(rùn)不低于13

000元,求獲利最大的方案以及最大利潤(rùn).23.(12分)已知在梯形ABCD中,AD∥BC,AB=BC,DC⊥BC,且AD=1,DC=3,點(diǎn)P為邊AB上一動(dòng)點(diǎn),以P為圓心,BP為半徑的圓交邊BC于點(diǎn)Q.(1)求AB的長(zhǎng);(2)當(dāng)BQ的長(zhǎng)為時(shí),請(qǐng)通過計(jì)算說明圓P與直線DC的位置關(guān)系.24.(14分)如圖,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于點(diǎn)D,O為AB上一點(diǎn),經(jīng)過點(diǎn)A,D的⊙O分別交AB,AC于點(diǎn)E,F(xiàn),連接OF交AD于點(diǎn)G.求證:BC是⊙O的切線;設(shè)AB=x,AF=y(tǒng),試用含x,y的代數(shù)式表示線段AD的長(zhǎng);若BE=8,sinB=,求DG的長(zhǎng),

參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、B【解析】

先判斷出萊洛三角形等邊△DEF繞一周掃過的面積如圖所示,利用矩形的面積和扇形的面積之和即可.【詳解】如圖1中,∵等邊△DEF的邊長(zhǎng)為2π,等邊△ABC的邊長(zhǎng)為3,∴S矩形AGHF=2π×3=6π,由題意知,AB⊥DE,AG⊥AF,

∴∠BAG=120°,∴S扇形BAG==3π,∴圖形在運(yùn)動(dòng)過程中所掃過的區(qū)域的面積為3(S矩形AGHF+S扇形BAG)=3(6π+3π)=27π;故選B.【點(diǎn)睛】本題考查軌跡,弧長(zhǎng)公式,萊洛三角形的周長(zhǎng),矩形,扇形面積公式,解題的關(guān)鍵是判斷出萊洛三角形繞等邊△DEF掃過的圖形.2、D【解析】

分別利用整數(shù)指數(shù)冪的性質(zhì)以及合并同類項(xiàng)以及積的乘方運(yùn)算、絕對(duì)值的性質(zhì)分別化簡(jiǎn)求出答案.【詳解】解:A,,故此選項(xiàng)錯(cuò)誤;B,,故此選項(xiàng)錯(cuò)誤;C,,故此選項(xiàng)錯(cuò)誤;D,,故此選項(xiàng)正確.所以D選項(xiàng)是正確的.【點(diǎn)睛】靈活運(yùn)用整數(shù)指數(shù)冪的性質(zhì)以及合并同類項(xiàng)以及積的乘方運(yùn)算、絕對(duì)值的性質(zhì)可以求出答案.3、B【解析】A.y=-4x+5是一次函數(shù),故此選項(xiàng)錯(cuò)誤;B.

y=x(2x-3)=2x2-3x,是二次函數(shù),故此選項(xiàng)正確;C.

y=(x+4)2?x2=8x+16,為一次函數(shù),故此選項(xiàng)錯(cuò)誤;D.

y=是組合函數(shù),故此選項(xiàng)錯(cuò)誤.故選B.4、B【解析】

根據(jù)俯視圖可確定主視圖的列數(shù)和每列小正方體的個(gè)數(shù).【詳解】由俯視圖可得,主視圖一共有兩列,左邊一列由兩個(gè)小正方體組成,右邊一列由3個(gè)小正方體組成.故答案選B.【點(diǎn)睛】由幾何體的俯視圖可確定該幾何體的主視圖和左視圖.5、C【解析】解:∵A(0,1),B(0,﹣1),∴AB=1,OA=1,∴AC=1.在Rt△AOC中,cos∠BAC==,∴∠BAC=60°.故選C.點(diǎn)睛:本題考查了垂徑定理的應(yīng)用,關(guān)鍵是求出AC、OA的長(zhǎng).解題時(shí)注意:垂直弦的直徑平分這條弦,并且平分弦所對(duì)的兩條弧.6、A【解析】分析:依據(jù)AD是BC邊上的高,∠ABC=60°,即可得到∠BAD=30°,依據(jù)∠BAC=50°,AE平分∠BAC,即可得到∠DAE=5°,再根據(jù)△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,可得∠EAD+∠ACD=75°.詳解:∵AD是BC邊上的高,∠ABC=60°,∴∠BAD=30°,∵∠BAC=50°,AE平分∠BAC,∴∠BAE=25°,∴∠DAE=30°﹣25°=5°,∵△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,∴∠EAD+∠ACD=5°+70°=75°,故選A.點(diǎn)睛:本題考查了三角形內(nèi)角和定理:三角形內(nèi)角和為180°.解決問題的關(guān)鍵是三角形外角性質(zhì)以及角平分線的定義的運(yùn)用.7、A【解析】

利用因式分解法解方程即可.【詳解】解:(2x-3)(x+1)=0,2x-3=0或x+1=0,所以x1=,x2=-1.故選A.【點(diǎn)睛】本題考查了解一元二次方程-因式分解法:因式分解法就是先把方程的右邊化為0,再把左邊通過因式分解化為兩個(gè)一次因式的積的形式,那么這兩個(gè)因式的值就都有可能為0,這就能得到兩個(gè)一元一次方程的解,這樣也就把原方程進(jìn)行了降次,把解一元二次方程轉(zhuǎn)化為解一元一次方程的問題了(數(shù)學(xué)轉(zhuǎn)化思想).8、B【解析】

解:∵O是坐標(biāo)原點(diǎn),菱形OABC的頂點(diǎn)A的坐標(biāo)為(3,﹣4),頂點(diǎn)C在x軸的正半軸上,∴OA=5,AB∥OC,∴點(diǎn)B的坐標(biāo)為(8,﹣4),∵函數(shù)y=(k<0)的圖象經(jīng)過點(diǎn)B,∴﹣4=,得k=﹣32.故選B.【點(diǎn)睛】本題主要考查菱形的性質(zhì)和用待定系數(shù)法求反函數(shù)的系數(shù),解此題的關(guān)鍵在于根據(jù)A點(diǎn)坐標(biāo)求得OA的長(zhǎng),再根據(jù)菱形的性質(zhì)求得B點(diǎn)坐標(biāo),然后用待定系數(shù)法求得反函數(shù)的系數(shù)即可.9、D【解析】

根據(jù)題意先畫出樹狀圖得出所有等情況數(shù)和到的書簽正好是相對(duì)應(yīng)的書名和作者姓名的情況數(shù),再根據(jù)概率公式即可得出答案.【詳解】解:根據(jù)題意畫圖如下:共有12種等情況數(shù),抽到的書簽正好是相對(duì)應(yīng)的書名和作者姓名的有2種情況,則抽到的書簽正好是相對(duì)應(yīng)的書名和作者姓名的概率是=;故選D.【點(diǎn)睛】此題考查的是用列表法或樹狀圖法求概率.列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;解題時(shí)要注意此題是放回實(shí)驗(yàn)還是不放回實(shí)驗(yàn).用到的知識(shí)點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.10、B【解析】分析:連接OC、OB,證出△BOC是等邊三角形,根據(jù)銳角三角函數(shù)的定義求解即可.詳解:如圖所示,連接OC、OB

∵多邊形ABCDEF是正六邊形,∴∠BOC=60°,∵OC=OB,∴△BOC是等邊三角形,∴∠OBM=60°,∴OM=OBsin∠OBM=4×=2.故選B.點(diǎn)睛:考查的是正六邊形的性質(zhì)、等邊三角形的判定與性質(zhì)、三角函數(shù);熟練掌握正六邊形的性質(zhì),由三角函數(shù)求出OM是解決問題的關(guān)鍵.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】

根據(jù)完全平方公式進(jìn)行展開,然后再進(jìn)行同類項(xiàng)合并即可.【詳解】解:.故填.【點(diǎn)睛】主要考查的是完全平方公式及二次根式的混合運(yùn)算,注意最終結(jié)果要化成最簡(jiǎn)二次根式的形式.12、>【解析】

觀察平均氣溫統(tǒng)計(jì)圖可知:乙地的平均氣溫比較穩(wěn)定,波動(dòng)小;波動(dòng)越小越穩(wěn)定.【詳解】解:觀察平均氣溫統(tǒng)計(jì)圖可知:乙地的平均氣溫比較穩(wěn)定,波動(dòng)小;則乙地的日平均氣溫的方差小,故S2甲>S2乙.故答案為:>.【點(diǎn)睛】本題考查方差的意義.方差是用來衡量一組數(shù)據(jù)波動(dòng)大小的量,方差越大,表明這組數(shù)據(jù)偏離平均數(shù)越大,即波動(dòng)越大,數(shù)據(jù)越不穩(wěn)定.反之,方差越小,表明這組數(shù)據(jù)分布比較集中,各數(shù)據(jù)偏離平均數(shù)越小,即波動(dòng)越小,數(shù)據(jù)越穩(wěn)定.13、1.【解析】

由三角形BCD為直角三角形,根據(jù)已知面積與BD的長(zhǎng)求出CD的長(zhǎng),由OC+CD求出OD的長(zhǎng),確定出B的坐標(biāo),代入反比例解析式求出k的值,利用反比例函數(shù)k的幾何意義求出三角形AOC面積即可.【詳解】∵BD⊥CD,BD=2,∴S△BCD=BD?CD=2,即CD=2.∵C(2,0),即OC=2,∴OD=OC+CD=2+2=1,∴B(1,2),代入反比例解析式得:k=10,即y=,則S△AOC=1.故答案為1.【點(diǎn)睛】本題考查了反比例函數(shù)系數(shù)k的幾何意義,以及反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征,熟練掌握反比例函數(shù)k的幾何意義是解答本題的關(guān)鍵.14、1【解析】分析:首先由方向角的定義及已知條件得出∠NPA=60°,AP=4海里,∠ABP=90°,再由AB∥NP,根據(jù)平行線的性質(zhì)得出∠A=∠NPA=60°.然后解Rt△ABP,得出AB=AP?cos∠A=1海里.詳解:如圖,由題意可知∠NPA=60°,AP=4海里,∠ABP=90°.∵AB∥NP,∴∠A=∠NPA=60°.在Rt△ABP中,∵∠ABP=90°,∠A=60°,AP=4海里,∴AB=AP?cos∠A=4×cos60°=4×=1海里.故答案為1.點(diǎn)睛:本題考查了解直角三角形的應(yīng)用-方向角問題,平行線的性質(zhì),三角函數(shù)的定義,正確理解方向角的定義是解題的關(guān)鍵.15、13【解析】試題解析:圓錐的側(cè)面積=×底面半徑×母線長(zhǎng),把相應(yīng)數(shù)值代入即可求解.設(shè)母線長(zhǎng)為R,則:解得:故答案為13.16、1【解析】原方程為3x2?6x+1=0,二次項(xiàng)系數(shù)化為1,得x2?2x=?,即x2?2x+1=?+1,所以(x?1)2=.故答案為:1,.17、a(a﹣1)【解析】

直接提取公因式a,進(jìn)而分解因式得出答案【詳解】a2﹣a=a(a﹣1).故答案為a(a﹣1).【點(diǎn)睛】此題考查公因式,難度不大三、解答題(共7小題,滿分69分)18、(1)如圖所示見解析,(2)當(dāng)半徑為6時(shí),該正六邊形的面積為【解析】試題分析:(1)先畫一半徑為a的圓,再作所畫圓的六等分點(diǎn),如圖所示,連接所得六等分點(diǎn),作出兩個(gè)等邊三角形即可;(2)如下圖,連接OA、OB、OC、OD,作OE⊥AB于點(diǎn)E,由已知條件先求出AB和OE的長(zhǎng),再求出CD的長(zhǎng),即可求得△OCD的面積,這樣即可由S陰影=6S△OCD求出陰影部分的面積了.試題解析:(1)所作圖形如下圖所示:(2)如下圖,連接OA、OB、OC、OD,作OE⊥AB于點(diǎn)E,則由題意可得:OA=OB=6,∠AOB=120°,∠OEB=90°,AE=BE,△BOC,△AOD都是等腰三角形,△OCD的三邊三角形,∴∠ABO=30°,BC=OC=CD=AD,∴BE=OB·cos30°=,OE=3,∴AB=,∴CD=,∴S△OCD=,∴S陰影=6S△OCD=.19、(1);(2)﹣2<x≤1.【解析】

(1)根據(jù)絕對(duì)值、特殊角的三角函數(shù)值可以解答本題;(2)根據(jù)解一元一次不等式組的方法可以解答本題.【詳解】(1)sin45°=3-+×-5+×=3-+3-5+1=7--5;(2)(2)由不等式①,得x>-2,由不等式②,得x≤1,故原不等式組的解集是-2<x≤1.【點(diǎn)睛】本題考查解一元一次不等式組、實(shí)數(shù)的運(yùn)算、特殊角的三角函數(shù)值,解答本題的關(guān)鍵是明確解它們各自的解答方法.20、(1)證明見解析;(2)1.【解析】試題分析:(1)取BD的中點(diǎn)0,連結(jié)OE,如圖,由∠BED=90°,根據(jù)圓周角定理可得BD為△BDE的外接圓的直徑,點(diǎn)O為△BDE的外接圓的圓心,再證明OE∥BC,得到∠AEO=∠C=90°,于是可根據(jù)切線的判定定理判斷AC是△BDE的外接圓的切線;(2)設(shè)⊙O的半徑為r,根據(jù)勾股定理得62+r2=(r+23)2,解得r=23,根據(jù)平行線分線段成比例定理,由OE∥BC得AECE試題解析:(1)證明:取BD的中點(diǎn)0,連結(jié)OE,如圖,∵DE⊥EB,∴∠BED=90°,∴BD為△BDE的外接圓的直徑,點(diǎn)O為△BDE的外接圓的圓心,∵BE平分∠ABC,∴∠CBE=∠OBE,∵OB=OE,∴∠OBE=∠OEB,∴∠EB=∠CBE,∴OE∥BC,∴∠AEO=∠C=90°,∴OE⊥AE,∴AC是△BDE的外接圓的切線;(2)解:設(shè)⊙O的半徑為r,則OA=OD+DA=r+23,OE=r,在Rt△AEO中,∵AE2+OE2=AO2,∴62+r2=(r+23)2,解得r=23,∵OE∥BC,∴AECE=AO∴CE=1.考點(diǎn):1、切線的判定;2、勾股定理21、(1);(2);(2)小貝的說法正確,理由見解析,.【解析】

(1)連接AC,BD,由OE垂直平分DC可得DH長(zhǎng),易知OH、HE長(zhǎng),相加即可;(2)補(bǔ)全⊙O,連接AO并延長(zhǎng)交⊙O右半側(cè)于點(diǎn)P,則此時(shí)A、P之間的距離最大,在Rt△AOD中,由勾股定理可得AO長(zhǎng),易求AP長(zhǎng);(1)小貝的說法正確,補(bǔ)全弓形弧AD所在的⊙O,連接ON,OA,OD,過點(diǎn)O作OE⊥AB于點(diǎn)E,連接BO并延長(zhǎng)交⊙O上端于點(diǎn)P,則此時(shí)B、P之間的距離即為門角B到門窗弓形弧AD的最大距離,在Rt△ANO中,設(shè)AO=r,由勾股定理可求出r,在Rt△OEB中,由勾股定理可得BO長(zhǎng),易知BP長(zhǎng).【詳解】解:(1)如圖1,連接AC,BD,對(duì)角線交點(diǎn)為O,連接OE交CD于H,則OD=OC.∵△DCE為等邊三角形,∴ED=EC,∵OD=OC∴OE垂直平分DC,∴DHDC=1.∵四邊形ABCD為正方形,∴△OHD為等腰直角三角形,∴OH=DH=1,在Rt△DHE中,HEDH=1,∴OE=HE+OH=11;(2)如圖2,補(bǔ)全⊙O,連接AO并延長(zhǎng)交⊙O右半側(cè)于點(diǎn)P,則此時(shí)A、P之間的距離最大,在Rt△AOD中,AD=6,DO=1,∴AO1,∴AP=AO+OP=11;(1)小貝的說法正確.理由如下,如圖1,補(bǔ)全弓形弧AD所在的⊙O,連接ON,OA,OD,過點(diǎn)O作OE⊥AB于點(diǎn)E,連接BO并延長(zhǎng)交⊙O上端于點(diǎn)P,則此時(shí)B、P之間的距離即為門角B到門窗弓形弧AD的最大距離,由題意知,點(diǎn)N為AD的中點(diǎn),,∴ANAD=1.6,ON⊥AD,在Rt△ANO中,設(shè)AO=r,則ON=r﹣1.2.∵AN2+ON2=AO2,∴1.62+(r﹣1.2)2=r2,解得:r,∴AE=ON1.2,在Rt△OEB中,OE=AN=1.6,BE=AB﹣AE,∴BO,∴BP=BO+PO,∴門角B到門窗弓形弧AD的最大距離為.【點(diǎn)睛】本題考查了圓與多邊形的綜合,涉及了圓的有關(guān)概念及性質(zhì)、等邊三角形的性質(zhì)、正方形和長(zhǎng)方形的性質(zhì)、勾股定理等,靈活的利用兩點(diǎn)之間線段最短,添加輔助線將題中所求最大距離轉(zhuǎn)化為圓外一點(diǎn)到圓上的最大距離是解題的關(guān)鍵.22、(1)每輛A型自行車的進(jìn)價(jià)為2000元,每輛B型自行車的進(jìn)價(jià)為1600元;(2)當(dāng)購(gòu)進(jìn)A型自行車34輛,B型自行車66輛時(shí)獲利最大,最大利潤(rùn)為13300元.【解析】

(1)設(shè)每輛B型自行車的進(jìn)價(jià)為x元,則每輛A型自行車的進(jìn)價(jià)為(x+10)元,根據(jù)題意列出方程,求出方程的解即可得到結(jié)果;

(2)由總利潤(rùn)=單輛利潤(rùn)×輛數(shù),列出y與x的關(guān)系式,利用一次函數(shù)性質(zhì)確定出所求即可.【詳解】(1)設(shè)每輛B型自行車的進(jìn)價(jià)為x元,則每輛A型自行車的進(jìn)價(jià)為(x+10)元,根據(jù)題意,得=,解得x=1600,經(jīng)檢驗(yàn),x=1600是原方程的解,x+10=1600+10=2000,答:每輛A型自行車的進(jìn)價(jià)為2000元,每輛B型自行車的進(jìn)價(jià)為1600元;(2)由題意,得y=(2100﹣2000)m+(1750﹣1600)(100﹣m)=﹣50m+15000,根據(jù)題意,得,解得:33≤m≤1,∵m為正整數(shù),∴m=34,35,36,37,38,39,1.∵y=﹣50m+15000,k=﹣50<0,∴y隨m的增大而減小,∴當(dāng)m=34時(shí),y有最大值,最大值為:﹣50×34+15000=13300(元).答:當(dāng)購(gòu)進(jìn)A型自行車34輛,B型自行車66輛時(shí)獲利最大,最大利潤(rùn)為13300元.【點(diǎn)睛】本題主要考查一次函數(shù)的應(yīng)用、分式方程的應(yīng)用及一元一次不等式組的應(yīng)用.仔細(xì)審題,找出題目中的數(shù)量關(guān)系是解答本題的關(guān)鍵.23、(1)AB長(zhǎng)為5;(2)圓P與直線DC相切,理由詳見解析.【解析】

(1)過A作AE⊥BC于E,根據(jù)矩形的性質(zhì)得到CE=AD=1,AE=CD=3,根據(jù)勾股定理即可得到結(jié)論;

(2)過P作PF⊥BQ于F,根據(jù)相似三角形的性質(zhì)得到PB=,得到PA=AB-PB=,過P作PG⊥CD于G交AE于M,根據(jù)相似三角形的性質(zhì)得到PM=,根據(jù)切線的判定定理即可得到結(jié)論.【詳解】(1)過A作AE⊥BC于E,

則四邊形AECD是矩形,

∴CE=AD=1,AE=CD=3,

∵AB=BC,

∴BE=AB-1,

在Rt△ABE中,∵A

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論