小學奧數知識總結_第1頁
小學奧數知識總結_第2頁
小學奧數知識總結_第3頁
小學奧數知識總結_第4頁
小學奧數知識總結_第5頁
已閱讀5頁,還剩2頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

小學(數學)奧數知識總結手冊

和差倍問題

和差問題和倍問題差倍問題

已知條件幾個數的和與差幾個數的和與倍數幾個數的差與倍數

公式適用范圍已知兩個數的和,差,倍數關系

①(和一差)+2=較小數

較小數+差=較大數

和+(倍數+1)=小數差?(倍數-1)二小數

和一較小數=較大數

公式小數X倍數=大數小數X倍數=大數

②(和+差)+2=較大數

和一小數=大數小數十差二大數

較大數一差=較小數

和一較大數=較小數

求出同一條件下的

關鍵問題

和與差和與倍數差與倍數

年齡問題的三個基本特征:

①兩個人的年齡差是不變的;

②兩個人的年齡是同時增加或者同時減少的;

③兩個人的年齡的倍數是發生變化的;

歸一問題的基本特點:

問題中有一個不變的量,一般是那個“單一量”,題目一般用“照這樣的速度”……等詞語來表示。

關鍵問題:根據題目中的條件確定并求出單一量;

植樹問題

在直線或者不封閉的

在直線或者不封閉的曲在直線或者不封閉的曲線封閉曲線上

基本類型曲線上植樹,兩端都不

線上植樹,兩端都植樹上植樹,只有一端植樹植樹

植樹

棵數=段數+1棵數二段數一1棵數=段數

基本公式

棵距X段數=總長棵距X段數=總長棵距X段數=總長

關鍵問題確定所屬類型,從而確定棵數與段數的關系

雞兔同籠問題

基本概念:雞兔同籠問題又稱為置換問題、假設問題,就是把假設錯的那部分置換出來;

基本思路:

①假設,即假設某種現象存在(甲和乙一樣或者乙和甲一樣):

②假設后,發生了和題目條件不同的差,找出這個差是多少:

③每個事物造成的差是固定的,從而找出出現這個差的原因;

④再根據這兩個差作適當的調整,消去出現的差。

基本公式:

①把所有雞假設成兔子:雞數=(兔腳數X總頭數一總腳數)一(兔腳數一雞腳數)

②把所有兔子假設成雞:兔數=(總腳數一雞腳數義總頭數)+(兔腳數-雞腳數)

關鍵問題:找出總量的差與單位量的差。

盈虧問題

基本概念:一定量的對象,按照某種標準分組,產生一種結果:按照另一種標準分組,又產生一種結果,

由于

分組的標準不同,造成結果的差異,由它們的關系求對象分組的組數或對象的總量.

基本思路:先將兩種分配方案進行比較,分析由于標準的差異造成結果的變化,根據這個關系求出參加分

配的總份數,然后根據題意求出對象的總量.

基本題型:

①一次有余數,另一次不足;

基本公式:總份數=(余數+不足數)+兩次每份數的差

②當兩次都有余數;

基本公式:總份數=(較大余數一較小余數)一兩次每份數的差

③當兩次都不足;

基本公式:總份數=(較大不足數一較小不足數)+兩次每份數的差

基本特點:對象總量和總的組數是不變的。

關鍵問題:確定對象總量和總的組數。

牛吃草問題

基本思路:假設每頭牛吃草的速度為“1”份,根據兩次不同的吃法,求出其中的總草量的差;再找出造成

這種差異的原因,即可確定草的生長速度和總草量。

基本特點:原草量和新草生長速度是不變的;

關鍵問題:確定兩個不變的量。

基本公式:

生長量=(較長時間X長時間牛頭數-較短時間X短時間牛頭數)+(長時間-短時間);

總草量=較長時間又長時間牛頭數-較長時間X生長量;

周期循環與數表規律

周期現象:事物在運動變化的過程中,某些特征有規律循環出現。

周期:我們把連續兩次出現所經過的時間叫周期。

關鍵問題:確定循環周期。

閏年:一年有366天;

①年份能被4整除;②如果年份能被100整除,則年份必須能被400整除;

平年:一年有365天。

①年份不能被4整除;②如果年份能被100整除,但不能被400整除;

平均數

基本公式:①平均數=總數量+總份數

總數量=平均數X總份數

總份數=總數量+平均數

②平均數=基準數+每一個數與基準數差的和+總份數

基本算法:

①求出總數量以及總份數,利用基本公式①進行計算.

②基準數法:根據給出的數之間的關系,確定一個基準數;一般選與所有數比較接近的數或者中間數為基

準數;以基準數為標準,求所有給出數與基準數的差;再求出所有差的和;再求出這些差的平均數;最后

求這個差的平均數和基準數的和,就是所求的平均數,具體關系見基本公式②

抽屜原理

抽屜原則一:如果把(n+1)個物體放在n個抽屜里,那么必有一個抽屜中至少放有2個物體。

例:把4個物體放在3個抽屜里,也就是把4分解成三個整數的和,那么就有以下四種情況:

04=4+0+0②4=3+1+0③4=2+2+0④4=2+1+1

觀察上面四種放物體的方式,我們會發現一個共同特點:總有那么一個抽屜里有2個或多于2個物體,也

就是說必有一個抽屜中至少放有2個物體。

抽屜原則二:如果把n個物體放在m個抽屜里,其中n>m,那么必有一個抽屜至少有:

①k=[n/m]+1個物體:當n不能被m整除時。

②卜二門/!!!個物體:當n能被m整除時。

理解知識點:[X]表示不超過X的最大整數。

例[4.351]=4;[0.321]=0;[2.9999]=2;

關鍵問題:構造物體和抽屜。也就是找到代表物體和抽屜的量,

而后依據抽屜原則進行運算。

定義新運算

基本概念:定義一種新的運算符號,這個新的運算符號包含有多種基本(混合)運算。

基本思路:嚴格按照新定義的運算規則,把已知的數代入,轉化為加減乘除的運算,然后按照基本運算過

程、規律進行運算。

關鍵問題:正確理解定義的運算符號的意義。

注意事項:①新的運算不一定符合運算規律,特別注意運算順序。

②每個新定義的運算符號只能在本題中使用。

數列求和

等差數列:在一列數中,任意相鄰兩個數的差是一定的,這樣的一列數,就叫做等差數列。

基本概念:首項:等差數列的第一個數,一般用小表示;

項數:等差數列的所有數的個數,一般用n表示;

公差:數列中任意相鄰兩個數的差,一般用d表示;

通項:表示數列中每一個數的公式,一般用a”表示;

數列的和:這一數列全部數字的和,一般用Sn表示.

基本思路:等差數列中涉及五個量:ai,an,d,n,Sn,,通項公式中涉及四個量,如果己知其中三個,就可求出

第四個;求和公式中涉及四個量,如果己知其中三個,就可以求這第四個。

基本公式:通項公式:an=ai+(n—1)d:

通項=首項+(項數一I)X公差;

數列和公式:sn,=(a)+an)Xn-r-2i

數列和=(首項+末項)X項數+2;

項數公式:n=(an+ai)4-d+l;

項數=(末項-首項)+公差+1;

公差公式;d=(ana,)>-r(n—1);

公差=(末項-首項)+(項數一1);

關鍵問題:確定已知量和未知量,確定使用的公式;

加法乘法原理和幾何計數

加法原理:如果完成一件任務有n類方法,在第一類方法中有mi種不同方法,在第二類方法中有m2種不

同方法……,在第n類方法中有m“種不同方法,那么完成這件任務共有:mi+m2…….+m”種不

同的方法。

關鍵問題:確定工作的分類方法。

基本特征:每一種方法都可完成任務。

乘法原理:如果完成一件任務需要分成n個步驟進行,做第1步有mi種方法,不管第1步用哪一種方法,

第2步總有m2種方法……不管前面n-1步用哪種方法,第n步總有mn種方法,那么完成這件

任務共有:m,Xm2.......Xm“種不同的方法。

關鍵問題:確定工作的完成步驟。

基本特征:每一步只能完成任務的一部分。

直線:一點在直線或空間沿一定方向或相反方向運動,形成的軌跡。

直線特點:沒有端點,沒有長度。

線段:直線上任意兩點間的距離。這兩點叫端點。

線段特點:有兩個端點,有長度。

射線:把直線的一端無限延長。

射線特點:只有一個端點;沒有長度。

①數線段規律:總數=1+2+3+…+(點數—1);

②數角規律=1+2+3+…+(射線數—'1);

③數長方形規律:個數=長的線段數X寬的線段數:

④數長方形規律:個數=1X1+2X2+3X3+…+行數X列數

約數與倍數

約數和倍數:若整數a能夠被b整除,a叫做b的倍數,b就叫做a的約數。

公約數:幾個數公有的約數,叫做這幾個數的公約數;其中最大的一個,叫做這兒個數的最大公約數。

最大公約數的性質:

1、幾個數都除以它們的最大公約數,所得的幾個商是互質數。

2、幾個數的最大公約數都是這幾個數的約數。

3、幾個數的公約數,都是這幾個數的最大公約數的約數。

4、幾個數都乘以一個自然數m,所得的積的最大公約數等于這幾個數的最大公約數乘以m。

例如:12的約數有1、2、3,4、6、12;

18的約數有:1、2、3、6、9、18:

那么12和18的公約數有:1、2、3、6;

那么12和18最大的公約數是:6,記作(12,18)=6;

求最大公約數基本方法:

1、分解質因數法:先分解質因數,然后把相同的因數連乘起來。

2、短除法:先找公有的約數,然后相乘。

3、輾轉相除法:每一次都用除數和余數相除,能夠整除的那個余數,就是所求的最大公約數。

公倍數:幾個數公有的倍數,叫做這幾個數的公倍數;其中最小的一個,叫做這幾個數的最小公倍數。

12的倍數有:12、24、36、48……;

18的倍數有:18、36、54、72……;

那么12和18的公倍數有:36、72、108……;

那么12和18最小的公倍數是36,記作[12,18]=36;

最小公倍數的性質:

1、兩個數的任意公倍數都是它們最小公倍數的倍數。

2、兩個數最大公約數與最小公倍數的乘積等于這兩個數的乘積。

求最小公倍數基本方法:1、短除法求最小公倍數;2、分解質因數的方法

數的整除

一、基本概念和符號:

1、整除:如果一個整數a,除以一個自然數b,得到一個整數商c,而且沒有余數,那么叫做a能被b整

除或b能整除a,記作b|a。

2、常用符號:整除符號不能整除符號”因為符號“???”,所以的符號

二、整除判斷方法:

1.能被2、5整除:末位上的數字能被2、5整除。

2.能被4、25整除:末兩位的數字所組成的數能被4、25整除。

3.能被8、125整除:末三位的數字所組成的數能被8、125整除。

4.能被3、9整除:各個數位上數字的和能被3、9整除。

5.能被7整除:

①末三位上數字所組成的數與末三位以前的數字所組成數之差能被7整除。

②逐次去掉最后一位數字并減去末位數字的2倍后能被7整除。

6.能被11整除:

①末三位上:數字所組成的數與末三位以前的數字所組成的數之差能被11整除。

②奇數位上的數字和與偶數位數的數字和的差能被11整除。

③逐次去掉最后一位數字并減去末位數字后能被11整除。

7.能被13整除:

①末三位上數字所組成的數與末三位以前的數字所組成的數之差能被13整除。

②逐次去掉最后一位數字并減去末位數字的9倍后能被13整除。

三、整除的性質:

1.如果a、b能被c整除,那么(a+b)與(a-b)也能被c整除。

2.如果a能被b整除,c是整數,那么a乘以c也能被b整除。

3.如果a能被b整除,b又能被c整除,那么a也能被c整除。

4.如果a能被b、c整除,那么a也能被b和c的最小公倍數整除。

余數及其應用

基本概念:對任意自然數a、b、q、r,如果使得a+b=q...r,且0〈r〈b,那么r叫做a除以b的余數,q

叫做a除以b的不完全商。

余數的性質:

①余數小于除數。

②若a、b除以c的余數相同,則c|a-b或c|b-a。

③a與b的和除以c的余數等于a除以c的余數加上b除以c的余數的和除以c的余數。

④a與b的積除以c的余數等于a除以c的余數與b除以c的余數的積除以c的余數。

余數、同余與周期

一、同余的定義:

①若兩個整數a、b除以m的余數相同,則稱a>b對于模m同余。

②已知三個整數a、b、m,如果m|a-b,就稱a、b對于模ni同余,記作a三b(modm),讀作a同余于b

模mo

二、同余的性質:

①自身性:a三a(modm);

②對稱性:若a三b(modm),則b三a(modm);

③傳遞性:若a三b(modm),b=c(modm),則a三c(modm);

④和差性:若a三b(modm),c=d(modm),則a+c三b+d(modm),a-c=b-d(modm);

⑤相乘性:若a三b(modm),c=d(m(xlm),則aXc三bXd(modm);

⑥乘方性:若a三b(modm),則a"^bn(modm);

⑦同借性:若a三b(modm),整數c,則aXc三bXc(modmXc);

三、關于乘方的預備知識:

①若A=aXb,KiJM'=MnXb=(Mn)b

②若B=c+d則

四、被3、9、11除后的余數特征:

①一個自然數M,n表示M的各個數位上數字的和,則M三n(mod9)或(mod3);

②一個自然數M,X表示M的各個奇數位上數字的和,Y表示M的各個偶數數位上數字的和,則M三Y-X

或M-11-(X-Y)(mod11);

五、費爾馬小定理:如果p是質數(素數),a是自然數,且a不能被p整除,則a"』l(mod位。

分數與百分數的應用

基本概念與性質:

分數:把單位“1”平均分成幾份,表示這樣的一份或幾份的數。

分數的性質:分數的分子和分母同時乘以或除以相同的數(0除外),分數的大小不變。

分數單位:把單位“1”平均分成幾份,表示這樣一份的數。

百分數:表示一個數是另一個數百分之幾的數。

常用方法:

①逆向思維方法:從題目提供條件的反方向(或結果)進行思考。

②對應思維方法:找出題目中具體的量與它所占的率的直接對應關系。

③轉化思維方法:把?類應用題轉化成另一類應用題進行解答。最常見的是轉換成比例和轉換成倍數關

系;把不同的標準(在分數中一般指的是一倍量)下的分率轉化成同一條件下的分率。常見的處理方法

是確定不同的標準為一倍量。

④假設思維方法:為了解題的方便,可以把題目中不相等的量假設成相等或者假設某種情況成立,計算

出相應的結果,然后再進行調整,求出最后結果。

⑤量不變思維方法:在變化的各個量當中,總有一個量是不變的,不論其他量如何變化,而這個量是始

終固定不變的。有以下三種情況:A、分量發生變化,總量不變。B、總量發生變化,但其中有的分量不

變。C、總量和分量都發生變化,但分量之間的差量不變化。

⑥替換思維方法:用一種量代替另一種量,從而使數量關系單一化、量率關系明朗化。

⑦同倍率法:總量和分量之間按照同分率變化的規律進行處理。

⑧濃度配比法:一般應用于總量和分量都發生變化的狀況。

分數大小的比較

基本方法:

①通分分子法:使所有分數的分子相同,根據同分子分數大小和分母的關系比較。

②通分分母法:使所有分數的分母相同,根據同分母分數大小和分子的關系比較。

③基準數法:確定一個標準,使所有的分數都和它進行比較。

④分子和分母大小比較法:當分子和分母的差一定時,分子或分母越大的分數值越大。

⑤倍率比較法:當比較兩個分子或分母同時變化時分數的大小,除了運用以上方法外,可以用同倍率的變

化關系比較分數的大小。(具體運用見同倍率變化規律)

⑥轉化比較方法:把所有分數轉化成小數(求出分數的值)后進行比較。

⑦倍數比較法:用一個數除以另一個數,結果得數和1進行比較。

⑧大小比較法:用一個分數減去另一個分數,得出的數和0比較。

⑨倒數比較法:利用倒數比較大小,然后確定原數的大小。

⑩基準數比較法:確定一個基準數,每一個數與基準數比較。

完全平方數

完全平方數特征:

1.末位數字只能是:0、1、4、5、6、9;反之不成立。

2.除以3余0或余1;反之不成立。

3.除以4余。或余1;反之不成立。

4.約數個數為奇數;反之成立。

5.奇數的平方的十位數字為偶數;反之不成立。

6.奇數平方個位數字是奇數;偶數平方個位數字是偶數。

7.兩個相臨整數的平方之間不可能再有平方數。

平方差公式:X2-Y2=(X-Y)(X+Y)

完全平方和公式:(X+Y)2=X2+2XY+Y2

完全平方差公式:(X-Y)2=X2-2XY+Y2

綜合行程

基本概念:行程問題是研究物體運動的,它研究的是物體速度、時間、路程三者之間的關系.

基本公式:路程二速度X時間;路程+時間二速度;路程+速度=時間

關鍵問題:確定運動過程中的位置和方向。

相遇問題:速度和X相遇時間二相遇路程(請寫出其他公式)

追及問題:追及時間=路程差個速度差(寫出其他公式)

流水問題:順水行程=(船速+水速)X順水時間

逆水行程=(船速-水速)X逆水時間

順水速度=船速+水速

逆水速度=船速-水速

靜水速度=(順水速度+逆水速度)4-2

水速=(順水速度-逆水速度)+2

流水問題:關鍵是確定物體所運動的速度,參照以上公式。

過橋問題:關鍵是確定物體所運動的路程,參照以上公式。

主要方法:畫線段圖法

基本題型:已知路程(相遇路程、追及路程)、時間(相遇時間、追及時間)、速度(速度和、速度差)中

任意兩個量,求第三個量。

工程問題

基本公式:

①工作總量=工作效率X工作時間

②工作效率=工作總量+工作時間

③工作時間=工作總量+工作效率

基本思路:

?I?設工作總量為“1”(和總工作量無關);

②假設一個方便的數為工作總量(一般是它們完成工作總量所用時間的最小公倍數),利用上述三個基本關系,

可以簡單地表示出工作效率及工作時間.

關鍵問題:確定工作量、工作時間、工作效率間的兩兩對應關系。

經驗簡評:合久必分,分久必合。

邏輯推理

基本方法簡介:

①條件分析一假設法:假設可能情況中的一種成立,然后按照這個假設去判斷,如果有與題設條件矛盾的

情況,說明該假設情況是不成立的,那么與他的相反情況是成立的。例如,假設a是偶數成立,在判斷過

程中出現了矛盾,那么a一定是奇數。

②條件分析一列表法:當題設條件比較多,需要多次假設才能完成時,就需要進行列表來輔助分析。列表

法就是把題設的條件全部表示在一個長方形表格中,表格的行、列分別表示不同的對象與情況,觀察表格

內的題設情況,運用邏輯規律進行判斷。

③條件分析——圖表法:當兩個對象之間只有兩種關系時,就可用連線表示兩個對象之間的關系,有連線

則表示“是,有”等肯定的狀態,沒有連線則表示否定的狀態。例如A和B兩人之間有認識或不認識兩種

狀態,有連線表示認識,沒有表示不認識。

④邏輯計算:在推理的過程中除了要進行條件分析的推理之外,還要進行相應的計算,根據計算的結果為

推理提供一個新的判斷篩選條件。

⑤簡單歸納與推理:根據題目提供的特征和數據,分析其中存在的規律和方法,并從特殊情況推廣到?般

情況,并遞推出相關的關系式,從而得到問題的解決。

幾何面積

基本思路:

在一些面積的計算上,不能直接運用公式的情況下,一般需要對圖形進行割補,平移、旋轉、翻折、

分解、變形、重疊等,使不規則的圖形變為規則的圖形進行計算;另外需要掌握和記憶一些常規的面積規

律。

常用方法:

1.連輔助線方法

2.利用等底等高的兩個三角形面積相等。

3.大膽假設(有些點的設置題目中說的是任意點,解題時可把任意點設置在特殊位置上)。

4.利用特殊規律

①等腰直角三角形,已知任意一條邊都可求出面積。(斜邊的平方除以4等于等腰直角三角形的面積)

②梯形對角線連線后,兩腰部分面積相等。

③圓的面積占外接正方形面積的78.5機

時鐘問題一快慢表問題

基本思路:

1、按照行程問題中的思維方法解題;

2、不同的表當成速度不同的運動物體;

3、路程的單位是分格(表一周為60分格);

4、時間是標準表所經過的時間;

5、合理利用行程問題中的比例關系;

經濟問題

利潤的百分數=(賣價-成本)+成本X100%;

賣價=成本X(1+利潤的百分數);

成本=賣價+(1+利潤的百分數):

商晶的定價按照期望的利潤來確定;

定價=成本X(1+期望利潤的百分數);

本金:儲蓄的金額;

利率:利息和本金的比:

利息k本金X利率X期數;

含稅價格=不含稅價格義(1+增值稅稅率);

簡單方程

代數式:用運算符號(加減乘除)連接起來的字母或者數字。

方程:含有未知數的等式叫方程。

列方程:把兩個或幾個相等的代數式用等號連起來。

列方程關鍵問題:用兩個以上的不同代

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論