2024屆濰坊第一中學(xué)高一數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)水平測試模擬試題含解析_第1頁
2024屆濰坊第一中學(xué)高一數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)水平測試模擬試題含解析_第2頁
2024屆濰坊第一中學(xué)高一數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)水平測試模擬試題含解析_第3頁
2024屆濰坊第一中學(xué)高一數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)水平測試模擬試題含解析_第4頁
2024屆濰坊第一中學(xué)高一數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)水平測試模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2024屆濰坊第一中學(xué)高一數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)水平測試模擬試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知的三個內(nèi)角之比為,那么對應(yīng)的三邊之比等于()A. B. C. D.2.集合,則()A. B. C. D.3.甲、乙兩隊準(zhǔn)備進行一場籃球賽,根據(jù)以往的經(jīng)驗甲隊獲勝的概率是,兩隊打平的概率是,則這次比賽乙隊不輸?shù)母怕适牵ǎ〢.- B. C. D.4.若樣本的平均數(shù)為10,其方差為2,則對于樣本的下列結(jié)論正確的是A.平均數(shù)為20,方差為8 B.平均數(shù)為20,方差為10C.平均數(shù)為21,方差為8 D.平均數(shù)為21,方差為105.有一個容量為200的樣本,樣本數(shù)據(jù)分組為,,,,,其頻率分布直方圖如圖所示.根據(jù)樣本的頻率分布直方圖估計樣本數(shù)據(jù)落在區(qū)間內(nèi)的頻數(shù)為()A.48 B.60 C.64 D.726.函數(shù)的定義域是().A. B. C. D.7.已知集合,,則()A. B. C. D.8.設(shè)集合,則()A. B. C. D.9.的值等于()A. B. C. D.10.在中,角A,B,C所對的邊分別為a,b,c,若,,則的值為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.如圖,正方體ABCD﹣A1B1C1D1的棱長為1,M為B1C1中點,連接A1B,D1M,則異面直線A1B和D1M所成角的余弦值為________________________.12.函數(shù)的定義域為_______.13.若為冪函數(shù),則滿足的的值為________.14.已知是等差數(shù)列,公差不為零,若,,成等比數(shù)列,且,則________15.在平面直角坐標(biāo)系xOy中,已知直角中,直角頂點A在直線上,頂點B,C在圓上,則點A橫坐標(biāo)的取值范圍是__________.16.已知,且,.則的值是________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù)f1當(dāng)a>0時,求函數(shù)y=f2若存在m>0使關(guān)于x的方程fx=m+118.設(shè)數(shù)列為等比數(shù)列,且,,(1)求數(shù)列的通項公式:(2)設(shè),數(shù)列的前項和,求證:.19.已知數(shù)列前項和為,滿足,(1)證明:數(shù)列是等差數(shù)列,并求;(2)設(shè),求證:.20.在△中,若.(Ⅰ)求角的大?。唬á颍┤?,,求△的面積.21.函數(shù)在一個周期內(nèi)的圖象如圖所示,為圖象的最高點,、為圖象與軸的交點,且為正三角形.(1)求的值及函數(shù)的值域;(2)若,且,求的值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解題分析】∵已知△ABC的三個內(nèi)角之比為,∴有,再由,可得,故三內(nèi)角分別為.再由正弦定理可得三邊之比,故答案為點睛:本題考查正弦定理的應(yīng)用,結(jié)合三角形內(nèi)角和等于,很容易得出三個角的大小,利用正弦定理即出結(jié)果2、C【解題分析】

先求解不等式化簡集合A和B,再根據(jù)集合的交集運算求得結(jié)果即可.【題目詳解】因為集合,集合或,所以.故本題正確答案為C.【題目點撥】本題考查一元二次不等式,分式不等式的解法和集合的交集運算,注意認(rèn)真計算,仔細(xì)檢查,屬基礎(chǔ)題.3、C【解題分析】

因為“甲隊獲勝”與“乙隊不輸”是對立事件,對立事件的概率之和為1,進而即可求出結(jié)果.【題目詳解】由題意,“甲隊獲勝”與“乙隊不輸”是對立事件,因為甲隊獲勝的概率是,所以,這次比賽乙隊不輸?shù)母怕适?故選C【題目點撥】本題主要考查對立事件的概率問題,熟記對立事件的性質(zhì)即可,屬于??碱}型.4、A【解題分析】

利用和差積的平均數(shù)和方差公式解答.【題目詳解】由題得樣本的平均數(shù)為,方差為.故選A【題目點撥】本題主要考查平均數(shù)和方差的計算,意在考查學(xué)生對這些知識的理解掌握水平,屬于基礎(chǔ)題.5、B【解題分析】

由,求出,計算出數(shù)據(jù)落在區(qū)間內(nèi)的頻率,即可求解.【題目詳解】由,解得,所以數(shù)據(jù)落在區(qū)間內(nèi)的頻率為,所以數(shù)據(jù)落在區(qū)間內(nèi)的頻數(shù),故選B.【題目點撥】本題主要考查了頻率分布直方圖,頻率、頻數(shù),屬于中檔題.6、C【解題分析】函數(shù)的定義域即讓原函數(shù)有意義即可;原式中有對數(shù),則故得到定義域為.故選C.7、D【解題分析】依題意,故.8、B【解題分析】

先求得集合,再結(jié)合集合的交集的概念及運算,即可求解.【題目詳解】由題意,集合,所以.故選:B.【題目點撥】本題主要考查了集合的交集的運算,其中解答中正確求解集合B,結(jié)合集合的交集的概念與運算求解是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.9、C【解題分析】

根據(jù)特殊角的三角函數(shù)值,得到答案.【題目詳解】.故選C項.【題目點撥】本題考查特殊角的三角函數(shù)值,屬于簡單題.10、D【解題分析】

由正弦定理及余弦定理可得,,然后求解即可.【題目詳解】解:由可得,則,①又,所以,即,所以②由①②可得:,由余弦定理可得,故選:D.【題目點撥】本題考查了正弦定理及余弦定理的綜合應(yīng)用,重點考查了兩角和的正弦公式,屬中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、.【解題分析】

連接、,取的中點,連接,可知,且是以為腰的等腰三角形,然后利用銳角三角函數(shù)可求出的值作為所求的答案.【題目詳解】如下圖所示:連接、,取的中點,連接,在正方體中,,則四邊形為平行四邊形,所以,則異面直線和所成的角為或其補角,易知,由勾股定理可得,,為的中點,則,在中,,因此,異面直線和所成角的余弦值為,故答案為.【題目點撥】本題考查異面直線所成角的余弦值的計算,求解異面直線所成的角一般利用平移直線法求解,遵循“一作、二證、三計算”,在計算時,一般利用銳角三角函數(shù)的定義或余弦定理求解,考查計算能力,屬于中等題.12、【解題分析】

由二次根式有意義,得:,然后利用指數(shù)函數(shù)的單調(diào)性即可得到結(jié)果.【題目詳解】由二次根式有意義,得:,即,因為在R上是增函數(shù),所以,x≤2,即定義域為:【題目點撥】本題主要考查函數(shù)定義域的求法以及指數(shù)不等式的解法,要求熟練掌握常見函數(shù)成立的條件,比較基礎(chǔ).13、【解題分析】

根據(jù)冪函數(shù)定義知,又,由二倍角公式即可求解.【題目詳解】因為為冪函數(shù),所以,即,因為,所以,即,因為,所以,.故填.【題目點撥】本題主要考查了冪函數(shù)的定義,正弦的二倍角公式,屬于中檔題.14、【解題分析】

根據(jù)題設(shè)條件,得到方程組,求得,即可得到答案.【題目詳解】由題意,數(shù)列是等差數(shù)列,滿足,,成等比數(shù)列,且,可得,即且,解得,所以.故答案為:.【題目點撥】本題主要考查了等差數(shù)列的通項公式,以及等比中項的應(yīng)用,其中解答中熟練利用等差數(shù)列的通項公式和等比中項公式,列出方程組求解是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.15、【解題分析】

由題意畫出圖形,寫出以原點為圓心,以為半徑的圓的方程,與直線方程聯(lián)立求得值,則答案可求.【題目詳解】如圖所示,當(dāng)點往直線兩邊運動時,不斷變小,當(dāng)點為直線上的定點時,直線與圓相切時,最大,∴當(dāng)為正方形,則,則以為圓心,以為半徑的圓的方程為.聯(lián)立,得.解得或.點橫坐標(biāo)的取值范圍是.故答案為:.【題目點撥】本題考查直線與圓位置關(guān)系的應(yīng)用,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意坐標(biāo)法的應(yīng)用.16、2【解題分析】

.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)a<-3-2【解題分析】

(1)將問題轉(zhuǎn)化為解不等式ax2-a+1x+1≥0,即ax-1x-1≥0(2)t=m+1m≥2,將問題轉(zhuǎn)化為:關(guān)于x的方程ax2【題目詳解】(1)由題意,fx=ax解方程ax-1x-1=0,得x1①當(dāng)1a>1時,即當(dāng)0<a<1時,解不等式ax-1x-1≥0,得此時,函數(shù)y=fx的定義域為②當(dāng)1a=1時,即當(dāng)a=1時,解不等式x-12此時,函數(shù)y=fx的定義域為③當(dāng)1a<1時,即當(dāng)a>1時,解不等式ax-1x-1≥0,解得此時,函數(shù)y=fx的定義域為(2)令t=m+1則關(guān)于x的方程fx=t有四個不同的實根可化為即ax2-解得a<-3-2【題目點撥】本題考查含參不等式的求解,考查函數(shù)的零點個數(shù)問題,在求解含參不等式時,找出分類討論的基本依據(jù),在求解二次函數(shù)的零點問題時,應(yīng)結(jié)合圖形找出等價條件,通過列不等式組來求解,考查分類討論數(shù)學(xué)思想以及轉(zhuǎn)化與化歸數(shù)學(xué)思想,屬于中等題。18、(1)(2)詳見解析【解題分析】

(1)將已知條件轉(zhuǎn)化為等比數(shù)列的基本量和,得到的值,從而得到數(shù)列的通項;(2)根據(jù)題意寫出,然后得到數(shù)列的通項,利用列項相消法進行求和,得到其前項和,然后進行證明.【題目詳解】設(shè)等比數(shù)列的首項為,公比為,因為,所以,所以所以;(2),所以,所以.因為,所以.【題目點撥】本題考查等比數(shù)列的基本量計算,裂項相消法求數(shù)列的和,屬于簡單題.19、(1).(2)見解析.【解題分析】(1)由可得,當(dāng)時,,兩式相減可是等差數(shù)列,結(jié)合等差數(shù)列的通項公式可求進而可求(2)由(1)可得,利用裂項相消法可求和,即可證明.試題分析:(1)(2)試題解析:(1)由知,當(dāng)即所以而故數(shù)列是以1為首項,1為公差的等差數(shù)列,且(2)因為所以考點:數(shù)列遞推式;等差關(guān)系的確定;數(shù)列的求和20、(Ⅰ)(Ⅱ)【解題分析】

(I)利用正弦定理化簡已知條件,由此求得的大小.(II)利用余弦定理求得的值,再根據(jù)三角形面積公式求得三角形面積.【題目詳解】解:(Ⅰ)在△中,由正弦定理可知,,所以.所以.即.(Ⅱ)在△中,由余弦定理可知,.所以.所以.所以△的面積.【題目點撥】本小題主要考查正弦定理和余弦

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論