2024屆湖北省武漢市七一(華源)中學數學九年級第一學期期末達標檢測模擬試題含解析_第1頁
2024屆湖北省武漢市七一(華源)中學數學九年級第一學期期末達標檢測模擬試題含解析_第2頁
2024屆湖北省武漢市七一(華源)中學數學九年級第一學期期末達標檢測模擬試題含解析_第3頁
2024屆湖北省武漢市七一(華源)中學數學九年級第一學期期末達標檢測模擬試題含解析_第4頁
2024屆湖北省武漢市七一(華源)中學數學九年級第一學期期末達標檢測模擬試題含解析_第5頁
已閱讀5頁,還剩18頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆湖北省武漢市七一(華源)中學數學九年級第一學期期末達標檢測模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.化簡的結果是()A. B. C. D.2.已知:如圖,矩形ABCD中,AB=2cm,AD=3cm.點P和點Q同時從點A出發,點P以3cm/s的速度沿A→D方向運動到點D為止,點Q以2cm/s的速度沿A→B→C→D方向運動到點D為止,則△APQ的面積S(cm2)與運動時間t(s)之間函數關系的大致圖象是()A. B.C. D.3.已知方程的兩根為,則的值是()A.1 B.2 C.-2 D.44.如圖所示,在中,與相交于點,為的中點,連接并延長交于點,則與的面積比值為()A. B. C. D.5.下列方程中,是關于x的一元二次方程的為()A. B. C. D.6.如圖,AB為⊙O的直徑,C,D為⊙O上的兩點,若AB=14,BC=1.則∠BDC的度數是()A.15° B.30° C.45° D.60°7.甲、乙、丙三名射擊運動員在某場測試中各射擊20次,3人的測試成績如下表.則甲、乙、丙3名運動員測試成績最穩定的是()甲的成績乙的成績丙的成績環數78910環數78910環數78910頻數4664頻數6446頻數5555A.甲 B.乙 C.丙 D.3人成績穩定情況相同8.已知一條拋物線的表達式為,則將該拋物線先向右平移個單位長度,再向上平移個單位長度,得到的新拋物線的表達式為()A. B. C. D.9.一元二次方程的兩個根為,則的值是()A.10 B.9 C.8 D.710.如圖,中,,若,,則邊的長是()A.2 B.4 C.6 D.811.已知拋物線的解析式為,則下列說法中錯誤的是()A.確定拋物線的開口方向與大小B.若將拋物線沿軸平移,則,的值不變C.若將拋物線沿軸平移,則的值不變D.若將拋物線沿直線:平移,則、、的值全變12.下列四幅圖的質地大小、背面圖案都一樣,把它們充分洗勻后翻放在桌面上,則從中任意抽取一張,抽到的圖案是中心對稱圖形的概率是()A. B. C. D.1二、填空題(每題4分,共24分)13.某校九年級學生畢業時,每個同學都將自己的相片向全班其他同學各送一張留作紀念,全班共送了1640張相片.如果全班有x名學生,根據題意,列出方程為________.14.將拋物線先向右平移個單位,再向下平移個單位,所得到的拋物線的函數解析式是____.15.如圖,AB是半圓O的直徑,D是半圓O上一點,C是的中點,連結AC交BD于點E,連結AD,若BE=4DE,CE=6,則AB的長為_____.16.如圖,在△ABC中,AC:BC:AB=3:4:5,⊙O沿著△ABC的內部邊緣滾動一圈,若⊙O的半徑為1,且圓心O運動的路徑長為18,則△ABC的周長為_____.17.在平面直角坐標系中,拋物線的圖象如圖所示.已知點坐標為,過點作軸交拋物線于點,過點作交拋物線于點,過點作軸交拋物線于點,過點作交拋物線于點……,依次進行下去,則點的坐標為_____.18.小明制作了十張卡片,上面分別標有1~10這是個數字.從這十張卡片中隨機抽取一張恰好能被4整除的概率是__________.三、解答題(共78分)19.(8分)足球賽期間,某商店銷售一批足球紀念冊,每本進價40元,規定銷售單價不低于44元,且獲利不高于30%.試銷售期間發現,當銷售單價定為44元時,每天可售出300本,銷售單價每漲1元,每天銷售量減少10本,現商店決定提價銷售.設每天銷售為本,銷售單價為元.(1)請直接寫出與之間的函數關系式和自變量的取值范圍;(2)將足球紀念冊銷售單價定為多少元時,商店每天銷售紀念冊獲得的利潤元最大?最大利潤是多少元?20.(8分)粵東農批﹒2019球王故里五華馬拉松賽于12月1日在廣東五華舉行,組委會為了做好運動員的保障工作,沿途設置了4個補給站,分別是:A(粵東農批)、B(奧體中心)、C(球王故里)和D(濱江中路),志愿者小明和小紅都計劃各自在這4個補給站中任意選擇一個進行補給服務,每個補給站被選擇的可能性相同.(1)小明選擇補給站C(球王故里)的概率是多少?(2)用樹狀圖或列表的方法,求小明和小紅恰好選擇同一個補給站的概率.21.(8分)已知,如圖,拋物線y=ax2+3ax+c(a>0)與y軸交于點C,與x軸交于A,B兩點,點A在點B左側.點B的坐標為(1,0),OC=3OB,(1)求拋物線的解析式;(2)若點D是線段AC下方拋物線上的動點,求四邊形ABCD面積的最大值.22.(10分)如圖,聰聰想在自己家的窗口A處測量對面建筑物CD的高度,他首先量出窗口A到地面的距離(AB)為16m,又測得從A處看建筑物底部C的俯角α為30°,看建筑物頂部D的仰角β為53°,且AB,CD都與地面垂直,點A,B,C,D在同一平面內.(1)求AB與CD之間的距離(結果保留根號).(2)求建筑物CD的高度(結果精確到1m).(參考數據:,,,)23.(10分)如圖,正方形ABCD的邊CD在正方形ECGF的邊CE上,連接DG,過點A作AH∥DG,交BG于點H.連接HF,AF,其中AF交EC于點M.(1)求證:△AHF為等腰直角三角形.(2)若AB=3,EC=5,求EM的長.24.(10分)如圖,已知△ABC內接于⊙O,且AB=AC,直徑AD交BC于點E,F是OE上的一點,使CF∥BD.(1)求證:BE=CE;(2)若BC=8,AD=10,求四邊形BFCD的面積.25.(12分)如圖,在以線段AB為直徑的⊙O上取一點,連接AC、BC,將△ABC沿AB翻折后得到△ABD

(1)試說明點D在⊙O上;(2)在線段AD的延長線上取一點E,使AB2=AC·AE,求證:BE為⊙O的切線;(3)在(2)的條件下,分別延長線段AE、CB相交于點F,若BC=2,AC=4,求線段EF的長.26.京劇臉譜是京劇藝術獨特的表現形式,現有三張不透明的卡片,其中兩張卡片的正面圖案為“紅臉”,另外一張卡片的正面圖案為“黑臉”,卡片除正面圖案不同外,其余均相同,將這三張卡片背面向上洗勻,從中隨機抽取一張,記錄圖案后放回,重新洗勻后再從中隨機抽取一張.請用畫樹狀圖或列表的方法,求抽出的兩張卡片上的圖案都是“紅臉”的概率(圖案為“紅臉”的兩張卡片分別記為、,圖案為“黑臉”的卡片記為).

參考答案一、選擇題(每題4分,共48分)1、D【解析】將除法變為乘法,化簡二次根式,再用乘法分配律展開計算即可.【詳解】原式=×=×(+1)=2+.故選D.【點睛】本題主要考查二次根式的加減乘除混合運算,掌握二次根式的混合運算法則是解題關鍵.2、C【分析】研究兩個動點到矩形各頂點時的時間,分段討論求出函數解析式即可求解.【詳解】解:分三種情況討論:(1)當0≤t≤1時,點P在AD邊上,點Q在AB邊上,∴S=,∴此時拋物線經過坐標原點并且開口向上;(1)當1<t≤1.5時,點P與點D重合,點Q在BC邊上,∴S==2,∴此時,函數值不變,函數圖象為平行于t軸的線段;(2)當1.5<t≤2.5時,點P與點D重合,點Q在CD邊上,∴S=×2×(7﹣1t))=﹣t+.∴函數圖象是一條線段且S隨t的增大而減?。蔬x:C.【點睛】本題考查了二次函數與幾何問題,用分類討論的數學思想解題是關鍵,解答時注意研究動點到達臨界點時的時間以此作為分段的標準,逐一分析求解.3、A【分析】先化成一元二次方程的一般形式,根據根與系數的關系得出x1+x2,x1?x2,代入求出即可.【詳解】∵2x2﹣3x=1,∴2x2﹣3x﹣1=0,由根與系數的關系得:x1+x2,x1?x2,所以x1+x1x2+x2()=1.故選:A.【點睛】本題考查了根與系數的關系,能熟記根與系數的關系的內容是解答本題的關鍵.4、C【分析】根據平行四邊形的性質得到OB=OD,利用點E是OD的中點,得到DE:BE=1:3,根據同高三角形面積比的關系得到S△ADE:S△ABE=1:3,利用平行四邊形的性質得S平行四邊形ABCD=2S△ABD,由此即可得到與的面積比.【詳解】在中,OB=OD,∵為的中點,∴DE=OE,∴DE:BE=1:3,∴S△ADE:S△ABE=1:3,∴S△ABE:S△ABD=1:4,∵S平行四邊形ABCD=2S△ABD,∴與的面積比為3:8,故選:C.【點睛】此題考查平行四邊形的性質,同高三角形面積比,熟記平行四邊形的性質并熟練運用解題是關鍵.5、B【解析】根據一元二次方程的定義,一元二次方程有三個特點:(1)只含有一個未知數;(1)未知數的最高次數是1;(3)是整式方程.要判斷一個方程是否為一元二次方程,先看它是否為整式方程,若是,再對它進行整理.如果能整理為ax1+bx+c=0(a≠0)的形式,則這個方程就為一元二次方程.【詳解】解:A.,是分式方程,B.,正確,C.,是二元二次方程,D.,是關于y的一元二次方程,故選B【點睛】此題主要考查了一元二次方程的定義,關鍵是掌握一元二次方程必須同時滿足三個條件:①整式方程,即等號兩邊都是整式;方程中如果有分母,那么分母中無未知數;②只含有一個未知數;③未知數的最高次數是1.6、B【解析】只要證明△OCB是等邊三角形,可得∠CDB=∠COB即可解決問題.【詳解】如圖,連接OC,∵AB=14,BC=1,∴OB=OC=BC=1,∴△OCB是等邊三角形,∴∠COB=60°,∴∠CDB=∠COB=30°,故選B.【點睛】本題考查圓周角定理,等邊三角形的判定等知識,解題的關鍵是學會利用數形結合的首先解決問題,屬于中考??碱}型.7、A【分析】先算出甲、乙、丙三人的方差,比較方差得出最穩定的人選.【詳解】由表格得:甲的平均數=甲的方差=同理可得:乙的平均數為:8.5,乙的方差為:1.45丙的平均數為:8.5,乙的方差為:1.25∴甲的方差最小,即甲最穩定故選:A【點睛】本題考查根據方差得出結論,解題關鍵是分別求解出甲、乙、丙的方差,比較即可.8、A【分析】可根據二次函數圖像左加右減,上加下減的平移規律進行解答.【詳解】二次函數向右平移個單位長度得,,再向上平移個單位長度得即故選A.【點睛】本題考查了二次函數的平移,熟練掌握平移規律是解題的關鍵.9、D【分析】利用方程根的定義可求得,再利用根與系數的關系即可求解.【詳解】為一元二次方程的根,,.根據題意得,,.故選:D.【點睛】本題主要考查了一元二次方程的解,根與系數的關系以及求代數式的值,熟練掌握根與系數的關系,是解題的關鍵.10、C【分析】由,∠A=∠A,得?ABD~?ACB,進而得,求出AC的值,即可求解.【詳解】∵,∠A=∠A,∴?ABD~?ACB,∴,即:,∴AC=8,∴CD=AC-AD=8-2=6,故選C.【點睛】本題主要考查相似三角形的判定和性質定理,掌握相似三角形的判定定理,是解題的關鍵.11、D【分析】利用二次函數的性質對A進行判斷;利用二次函數圖象平移的性質對B、C、D進行判斷.【詳解】解:A、確定拋物線的開口方向與大小,說法正確;B、若將拋物線C沿y軸平移,則拋物線的對稱軸不變,開口大小、開口方向不變,即a,b的值不變,說法正確;C、若將拋物線C沿x軸平移,拋物線的開口大小、開口方向不變,即a的值不變,說法正確;D、若將拋物線C沿直線l:y=x+2平移,拋物線的開口大小、開口方向不變,即a不變,b、c的值改變,說法錯誤;故選:D.【點睛】本題考查了二次函數圖象與幾何變換,由于拋物線平移后的形狀不變,所以a不變.12、C【分析】先判斷出幾個圖形中的中心對稱圖形,再根據概率公式解答即可.【詳解】解:由圖形可得出:第1,2,3個圖形都是中心對稱圖形,∴從中任意抽取一張,抽到的圖案是中心對稱圖形的概率是:.故選:C.【點睛】此題主要考查了概率計算公式,熟練掌握中心對稱圖形的定義和概率的計算公式是解題的關鍵.二、填空題(每題4分,共24分)13、x(x-1)=1【解析】試題分析:每人要贈送(x﹣1)張相片,有x個人,所以全班共送:(x﹣1)x=1.故答案是(x﹣1)x=1.考點:列一元二次方程.14、【分析】根據題意先確定出原拋物線的頂點坐標,然后根據向右平移橫坐標加,向下平移縱坐標減求出新圖象的頂點坐標,然后寫出即可.【詳解】解:拋物線的頂點坐標為(0,0),向右平移1個單位,再向下平移2個單位后的圖象的頂點坐標為(1,-2),所以得到圖象的解析式為.故答案為:.【點睛】本題主要考查的是函數圖象的平移,根據平移規律“左加右減,上加下減”利用頂點的變化確定圖形的變化是解題的關鍵.15、4【分析】如圖,連接OC交BD于K.設DE=k.BE=4k,則DK=BK=2.5k,EK=1.5k,由AD∥CK,推出AE:EC=DE:EK,可得AE=4,由△ECK∽△EBC,推出EC2=EK?EB,求出k即可解決問題.【詳解】解:如圖,連接OC交BD于K.∵,∴OC⊥BD,∵BE=4DE,∴可以假設DE=k.BE=4k,則DK=BK=2.5k,EK=1.5k,∵AB是直徑,∴∠ADK=∠DKC=∠ACB=90°,∴AD∥CK,∴AE:EC=DE:EK,∴AE:6=k:1.5k,∴AE=4,∵△ECK∽△EBC,∴EC2=EK?EB,∴36=1.5k×4k,∵k>0,∴k=,∴BC===2,∴AB===4.故答案為:4.【點睛】本題考查相似三角形的判定和性質,垂徑定理,圓周角定理等知識,解題的關鍵是學會添加常用輔助線,構造相似三角形解決問題,屬于中考??碱}型.16、4【分析】如圖,首先利用勾股定理判定△ABC是直角三角形,由題意得圓心O所能達到的區域是△DEG,且與△ABC三邊相切,設切點分別為G、H、P、Q、M、N,連接DH、DG、EP、EQ、FM、FN,根據切線性質可得:AG=AH,PC=CQ,BN=BM,DG、EP分別垂直于AC,EQ、FN分別垂直于BC,FM、DH分別垂直于AB,繼而則有矩形DEPG、矩形EQNF、矩形DFMH,從而可知DE=GP,EF=QN,DF=HM,DE∥GP,DF∥HM,EF∥QN,∠PEF=90°,根據題意可知四邊形CPEQ是邊長為1的正方形,根據相似三角形的判定可得△DEF∽△ACB,根據相似三角形的性質可知:DE∶EF∶FD=AC∶CB∶BA=3∶4∶1,進而根據圓心O運動的路徑長列出方程,求解算出DE、EF、FD的長,根據矩形的性質可得:GP、QN、MH的長,根據切線長定理可設:AG=AH=x,BN=BM=y,根據線段的和差表示出AC、BC、AB的長,進而根據AC∶CB∶BA=3∶4∶1列出比例式,繼而求出x、y的值,進而即可求解△ABC的周長.【詳解】∵AC∶CB∶BA=3∶4∶1,設AC=3a,CB=4a,BA=1a(a>0)∴∴△ABC是直角三角形,設⊙O沿著△ABC的內部邊緣滾動一圈,如圖所示,連接DE、EF、DF,設切點分別為G、H、P、Q、M、N,連接DH、DG、EP、EQ、FM、FN,根據切線性質可得:AG=AH,PC=CQ,BN=BMDG、EP分別垂直于AC,EQ、FN分別垂直于BC,FM、DH分別垂直于AB,∴DG∥EP,EQ∥FN,FM∥DH,∵⊙O的半徑為1∴DG=DH=PE=QE=FN=FM=1,則有矩形DEPG、矩形EQNF、矩形DFMH,∴DE=GP,EF=QN,DF=HM,DE∥GP,DF∥HM,EF∥QN,∠PEF=90°又∵∠CPE=∠CQE=90°,PE=QE=1∴四邊形CPEQ是正方形,∴PC=PE=EQ=CQ=1,∵⊙O的半徑為1,且圓心O運動的路徑長為18,∴DE+EF+DF=18,∵DE∥AC,DF∥AB,EF∥BC,∴∠DEF=∠ACB,∠DFE=∠ABC,∴△DEF∽△ABC,∴DE:EF:DF=AC:BC:AB=3:4:1,設DE=3k(k>0),則EF=4k,DF=1k,∵DE+EF+DF=18,∴3k+4k+1k=18,解得k=,∴DE=3k=,EF=4k=6,DF=1k=,根據切線長定理,設AG=AH=x,BN=BM=y,則AC=AG+GP+CP=x++1=x+1.1,BC=CQ+QN+BN=1+6+y=y+2,AB=AH+HM+BM=x++y=x+y+2.1,∵AC:BC:AB=3:4:1,∴(x+1.1):(y+2):(x+y+2.1)=3:4:1,解得x=2,y=3,∴AC=2.1,BC=10,AB=3.1,∴AC+BC+AB=4.所以△ABC的周長為4.故答案為4.【點睛】本題是一道動圖形問題,考查切線的性質定理、相似三角形的判定與性質、矩形的判定與性質、解直角三角形等知識點,解題的關鍵是確定圓心O的軌跡,學會作輔助線構造相似三角形,綜合運用上述知識點.17、【解析】根據二次函數性質可得出點的坐標,求得直線為,聯立方程求得的坐標,即可求得的坐標,同理求得的坐標,即可求得的坐標,根據坐標的變化找出變化規律,即可找出點的坐標.【詳解】解:∵點坐標為,∴直線為,,∵,∴直線為,解得或,∴,∴,∵,∴直線為,解得或,∴,∴…,∴,故答案為.【點睛】本題考查了二次函數圖象上點的坐標特征、一次函數的圖象以及交點的坐標,根據坐標的變化找出變化規律是解題的關鍵.18、【分析】由小明制作了十張卡片,上面分別標有這是個數字.其中能被4整除的有4,8,直接利用概率公式求解即可求得答案.【詳解】解:小明制作了十張卡片,上面分別標有這是個數字.其中能被4整除的有4,8;從這十張卡片中隨機抽取一張恰好能被4整除的概率是:.故答案為:.【點睛】此題考查了概率公式的應用.用到的知識點為:概率所求情況數與總情況數之比.三、解答題(共78分)19、(1)(2)當x=52時,w有最大值為2640.【分析】(1)售單價每上漲1元,每天銷售量減少10本,則售單價每上漲(x-44)元,每天銷售量減少10(x-44)本,所以y=300-10(x-44),然后利用銷售單價不低于44元,且獲利不高于30%確定x的范圍;

(2)利用利用每本的利潤乘以銷售量得到總利潤得到w=(x-40)(-10x+740),再把它變形為頂點式,然后利用二次函數的性質得到x=52時w最大,從而計算出x=52時對應的w的值即可.【詳解】(1)由題意得:y=300-10(x-44)=-10x+740,

每本進價40元,且獲利不高于30%,即最高價為52元,即x≤52,故:44≤x≤52,

(2)w=(x-40)(-10x+740)=-10(x-57)2+2890,

當x<57時,w隨x的增大而增大,

而44≤x≤52,所以當x=52時,w有最大值,最大值為2640,

答:將足球紀念冊銷售單價定為52元時,商店每天銷售紀念冊獲得的利潤w元最大,最大利潤2640元.【點睛】此題考查二元一次函數的應用,二次函數的應用.最大銷售利潤的問題常利函數的增減性來解答,解題關鍵在于確定變量,建立函數模型,然后結合實際選擇最優方案.其中要注意應該在自變量的取值范圍內求最大值(或最小值),也就是說二次函數的最值不一定在x=?時取得.20、(1);(2)【分析】(1)共有4個補給站,所以小明選擇補給站C(球王故里)的概率是;(2)用樹狀圖或列表表示出所有的情況數,從中找出小明和小紅恰好選擇同一個補給站的情況數,利用概率公式求解即可.【詳解】解:(1)在這4個補給站中任意選擇一個補給站服務,每個補給站被選擇的可能性相同,∴小明選擇補給站C(球王故里)的概率是;(2)畫樹狀圖分析如下:共有16種等可能的結果,小明和小紅恰好選擇同一個補給站的結果有4種,∴小明和小紅恰好選擇同一個補給站的概率為=.【點睛】本題主要考查樹狀圖或列表法求隨機事件的概率,掌握概率公式是解題的關鍵.21、(1);(2)四邊形ABCD面積有最大值.【分析】(1)已知B點坐標,易求得OB、OC的長,進而可將B、C的坐標代入拋物線中,求出待定系數的值,即可得出拋物線的解析式.

(2)根據A、C的坐標,易求得直線AC的解析式.由于AB、OC都是定值,則△ABC的面積不變,若四邊形ABCD面積最大,則△ADC的面積最大;可過D作x軸的垂線,交AC于M,x軸于N;易得△ADC的面積是DM與OA積的一半,可設出N點的坐標,分別代入直線AC和拋物線的解析式中,即可求出DM的長,進而可得出四邊形ABCD的面積與N點橫坐標間的函數關系式,根據所得函數的性質即可求出四邊形ABCD的最大面積.【詳解】(1)∵B(1,0),∴OB=1;∵OC=3BO,∴C(0,﹣3);∵y=ax2+3ax+c過B(1,0)、C(0,﹣3),∴;解這個方程組,得,∴拋物線的解析式為:y=x2+x﹣3;(2)過點D作DM∥y軸分別交線段AC和x軸于點M、N在y=x2+x﹣3中,令y=0,得方程x2+x﹣3=0解這個方程,得x1=﹣4,x2=1∴A(﹣4,0)設直線AC的解析式為y=kx+b∴,解這個方程組,得,∴AC的解析式為:y=﹣x﹣3,∵S四邊形ABCD=S△ABC+S△ADC=+?DM?(AN+ON)=+2?DM設D(x,x2+x﹣3),M(x,﹣x﹣3),DM=﹣x﹣3﹣(x2+x﹣3)=﹣(x+2)2+3,當x=﹣2時,DM有最大值3此時四邊形ABCD面積有最大值=+2×3=.【點睛】此題考查了二次函數解析式的確定、圖形面積的求法、平行四邊形的判定和性質、二次函數的應用等知識,綜合性強,難度較大.22、(1);(2)51m【分析】(1)作于M,根據矩形的性質得到,,根據正切的定義求出AM;(2)根據正切的定義求出DM,結合圖形計算,得到答案.【詳解】解:(1)作于M,則四邊形ABCM為矩形,,,在中,,則,答:AB與CD之間的距離;(2)在中,,則,,答:建筑物CD的高度約為51m.【點睛】本題考查的是解直角三角形的應用-仰角俯角問題,掌握仰角俯角的概念、熟記銳角三角函數的定義是解題的關鍵.23、(1)見解析;(2)EM=【分析】(1)通過證明四邊形AHGD是平行四邊形,可得AH=DG,AD=HG=CD,由“SAS”可證△DCG≌△HGF,可得DG=HF,∠HFG=∠HGD,可證AH⊥HF,AH=HF,即可得結論;

(2)由題意可得DE=2,由平行線分線段成比例可得,即可求EM的長.【詳解】證明:(1)∵四邊形ABCD,四邊形ECGF都是正方形∴DA∥BC,AD=CD,FG=CG,∠B=∠CGF=90°∵AD∥BC,AH∥DG,∴四邊形AHGD是平行四邊形∴AH=DG,AD=HG=CD,∵CD=HG,∠ECG=∠CGF=90°,FG=CG,∴△DCG≌△HGF(SAS),∴DG=HF,∠HFG=∠HGD∴AH=HF,∵∠HGD+∠DGF=90°,∴∠HFG+∠DGF=90°∴DG⊥HF,且AH∥DG,∴AH⊥HF,且AH=HF∴△AHF為等腰直角三角形.(2)∵AB=3,EC=1,∴AD=CD=3,DE=2,EF=1.∵AD∥EF,∴,且DE=2.∴EM=.【點睛】本題考查了正方形的性質,平行四邊形的判定和性質,全等三角形的判定和性質,平行線分線段成比例等知識點,綜合性較強難度大靈活運用這些知識進行推理是本題的關鍵.24、(1)見解析;(2)四邊形BFCD的面積為1.【分析】(1)由AB=AC可得,然后根據垂徑定理的推論即可證得結論;(2)先根據ASA證得△BED≌△CEF,從而可得CF=BD,于是可推得四邊形BFCD是平行四邊形,進一步即得四邊形BFCD是菱形;易證△AEC∽△CED,設DE=x,根據相似三角形的性質可得關于x的方程,解方程即可求出x的值,再根據菱形面積公式計算即可.【詳解】(1)證明:∵AB=AC,∴,∵AE過圓心O,∴BE=CE;(2)解:∵AB=AC,BE=CE,∴AD⊥BC,∠BAD=∠CAD,∴∠BED=∠CEF=90°,∵CF∥BD,∴∠DBE=∠FCE,∴△BED≌△CEF(ASA),∴CF=BD,∴四邊形BFCD是平行四邊形,∵AD⊥BC,∴平行四邊形BFCD是菱形;∴BD=CD,∴,∴∠CAE=∠ECD,∵∠AEC=∠CED=90°,∴△AEC∽△CED,∴,∴CE2=DE?AE,設DE=x,∵BC=8,A

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論