




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年湖南省郴州市汝城縣數學九年級第一學期期末教學質量檢測試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題(每題4分,共48分)1.如圖,一邊靠墻(墻有足夠長),其它三邊用12m長的籬笆圍成一個矩形(ABCD)花園,這個花園的最大面積是()A.16m2 B.12m2 C.18m2 D.以上都不對2.二次函數y=x2﹣2x+1與x軸的交點個數是()A.0 B.1 C.2 D.33.下列函數,當時,隨著的增大而減小的是()A. B. C. D.4.如圖,在正方形中,繞點順時針旋轉后與重合,,,則的長度為()A.4 B. C.5 D.5.如圖,△ABC中,∠B=70°,則∠BAC=30°,將△ABC繞點C順時針旋轉得△EDC.當點B的對應點D恰好落在AC上時,∠CAE的度數是()A.30° B.40° C.50° D.60°6.如圖,在△OAB中,頂點O(0,0),A(﹣3,4),B(3,4),將△OAB與正方形ABCD組成的圖形繞點O逆時針旋轉,每次旋轉90°,則第2019次旋轉結束時,點D的坐標為()A.(3,﹣10) B.(10,3) C.(﹣10,﹣3) D.(10,﹣3)7.如圖,點E、F分別為正方形ABCD的邊BC、CD上一點,AC、BD交于點O,且∠EAF=45°,AE,AF分別交對角線BD于點M,N,則有以下結論:①△AOM∽△ADF;②EF=BE+DF;③∠AEB=∠AEF=∠ANM;④S△AEF=2S△AMN,以上結論中,正確的個數有()個.A.1 B.2 C.3 D.48.如圖,在中,,則劣弧的度數為()A. B. C. D.9.如圖,拋物線=與軸交于點,其對稱軸為直線,結合圖象分析下列結論:①;②;③>0;④當時,隨的增大而增大;⑤≤(m為實數),其中正確的結論有()A.2個 B.3個 C.4個 D.5個10.二次函數y=2x2﹣4x﹣6的最小值是()A.﹣8 B.﹣2 C.0 D.611.下面四組圖形中,必是相似三角形的為()A.兩個直角三角形B.兩條邊對應成比例,一個對應角相等的兩個三角形C.有一個角為40°的兩個等腰三角形D.有一個角為100°的兩個等腰三角形12.近幾年我國國產汽車行業蓬勃發展,下列汽車標識中,是中心對稱圖形的是()A. B.C. D.二、填空題(每題4分,共24分)13.150°的圓心角所對的弧長是5πcm,則此弧所在圓的半徑是______cm.14.觀察下列運算:81=8,82=64,83=512,84=4096,85=32768,86=262144,…,則:81+82+83+84+…+82014的和的個位數字是.15.已知關于x的方程x2+3x+m=0有一個根為﹣2,則m=_____,另一個根為_____.16.如圖,在中,在邊上,,是的中點,連接并延長交于,則______.17.如圖,P是反比例函數y=的圖象上的一點,過點P分別作x軸、y軸的垂線,得圖中陰影部分的面積為3,則這個反比例函數的比例系數是_____.18.如圖,邊長為4的正六邊形內接于,則的內接正三角形的邊長為______________.三、解答題(共78分)19.(8分)如圖,四邊形ABCD的三個頂點A、B、D在⊙O上,BC經過圓心O,且交⊙O于點E,∠A=120°,∠C=30°.(1)求證:CD是⊙O的切線.(2)若CD=6,求BC的長.(3)若⊙O的半徑為4,則四邊形ABCD的最大面積為.20.(8分)某校為了深入學習社會主義核心價值觀,對本校學生進行了一次相關知識的測試,隨機抽取了部分學生的測試成績進行統計(根據成績分為、、、、五個組,表示測試成績,組:;組:;組:;組:;組:),通過對測試成績的分析,得到如圖所示的兩幅不完整的統計圖,請你根據圖中提供的信息解答以下問題:(1)抽取的學生共有______人,請將兩幅統計圖補充完整;(2)抽取的測試成績的中位數落在______組內;(3)本次測試成績在80分以上(含80分)為優秀,若該校初三學生共有1200人,請估計該校初三測試成績為優秀的學生有多少人?21.(8分)拋物線的對稱軸為直線,該拋物線與軸的兩個交點分別為和,與軸的交點為,其中.(1)寫出點的坐標________;(2)若拋物線上存在一點,使得的面積是的面積的倍,求點的坐標;(3)點是線段上一點,過點作軸的垂線交拋物線于點,求線段長度的最大值.22.(10分)(1)如圖1,已知∠ACB=∠DCE=90°,AC=BC=6,CD=CE,AE=3,∠CAE=45°,求AD的長.(2)如圖2,已知∠ACB=∠DCE=90°,∠ABC=∠CED=∠CAE=30°,AC=3,AE=8,求AD的長.23.(10分)裝潢公司要給邊長為6米的正方形墻面ABCD進行裝潢,設計圖案如圖所示(四周是四個全等的矩形,用材料甲進行裝潢;中心區是正方形MNPQ,用材料乙進行裝潢).兩種裝潢材料的成本如下表:材料甲乙價格(元/米2)5040設矩形的較短邊AH的長為x米,裝潢材料的總費用為y元.(1)MQ的長為米(用含x的代數式表示);(2)求y關于x的函數解析式;(3)當中心區的邊長不小于2米時,預備資金1760元購買材料一定夠用嗎?請說明理由.24.(10分)如圖,一艘游輪在A處測得北偏東45°的方向上有一燈塔B.游輪以20海里/時的速度向正東方向航行2小時到達C處,此時測得燈塔B在C處北偏東15°的方向上,求A處與燈塔B相距多少海里?(結果精確到1海里,參考數據:≈1.41,≈1.73)25.(12分)如圖,方格紙中的每個小方格都是邊長為1個單位的正方形,建立平面直角坐標系后,的頂點均在格點上,點的坐標為.(1)畫出關于軸對稱的;寫出頂點的坐標(,),(,).(2)畫出將繞原點按順時針旋轉所得的;寫出頂點的坐標(,),(,),(,).(3)與成中心對稱圖形嗎?若成中心對稱圖形,寫出對稱中心的坐標.26.如圖,已知直線y=x+2與x軸、y軸分別交于點B,C,拋物線y=x2+bx+c過點B、C,且與x軸交于另一個點A.(1)求該拋物線的表達式;(2)若點P是x軸上方拋物線上一點,連接OP.①若OP與線段BC交于點D,則當D為OP中點時,求出點P坐標.②在拋物線上是否存在點P,使得∠POC=∠ACO若存在,求出點P坐標;若不存在,請說明理由.
參考答案一、選擇題(每題4分,共48分)1、C【分析】設AB邊為x,則BC邊為(12-2x),根據矩形的面積可列二次函數,再求出最大值即可.【詳解】設AB邊為x,則BC邊為(12-2x),則矩形ABCD的面積y=x(12-2x)=-2(x-3)2+18,∴當x=3時,面積最大為18,選C.【點睛】此題主要考察二次函數的應用,正確列出函數是解題的關鍵.2、B【解析】由△=b2-4ac=(-2)2-4×1×1=0,可得二次函數y=x2-2x+1的圖象與x軸有一個交點.故選B.3、D【分析】根據各個選項中的函數解析式,可以判斷出當x>0時,y隨x的增大如何變化,從而可以解答本題.【詳解】在y=2x+1中,當x>0時,y隨x的增大而增大,故選項A不符合題意;在中,當x>0時,y隨x的增大而增大,故選項B不符合題意;在中,當x>0時,y隨x的增大而增大,故選項C不符合題意;在y=?x2?2x=?(x+1)2+1中,當x>0時,y隨x的增大而減小,故選項D符合題意;故選:D.【點睛】本題考查一次函數的性質、反比例函數的性質、二次函數的性質,解答本題的關鍵是明確題意,可以判斷出當x>0時,y隨x的增大如何變化.4、D【分析】先根據旋轉性質及正方形的性質構造方程求正方形的邊長,再利用勾股定理求值即可.【詳解】繞點順時針旋轉后與重合四邊形ABCD為正方形在中,故選D.【點睛】本題考查了全等三角形的性質、旋轉的性質、正方形的性質、勾股定理,找到直角三角形運用勾股定理求值是解題的關鍵.5、C【解析】由三角形內角和定理可得∠ACB=80°,由旋轉的性質可得AC=CE,∠ACE=∠ACB=80°,由等腰的性質可得∠CAE=∠AEC=50°.【詳解】∵∠B=70°,∠BAC=30°∴∠ACB=80°∵將△ABC繞點C順時針旋轉得△EDC.∴AC=CE,∠ACE=∠ACB=80°∴∠CAE=∠AEC=50°故選C.【點睛】本題考查了旋轉的性質,等腰三角形的性質,熟練運用旋轉的性質是本題的關鍵.6、C【分析】先求出AB=1,再利用正方形的性質確定D(-3,10),由于2019=4×504+3,所以旋轉結束時,相當于△OAB與正方形ABCD組成的圖形繞點O順時針旋轉3次,由此求出點D坐標即可.【詳解】∵A(﹣3,4),B(3,4),∴AB=3+3=1.∵四邊形ABCD為正方形,∴AD=AB=1,∴D(﹣3,10).∵2019=4×504+3,∴每4次一個循環,第2019次旋轉結束時,相當于△OAB與正方形ABCD組成的圖形繞點O順時針旋轉3次,每次旋轉,剛好旋轉到如圖O的位置.∴點D的坐標為(﹣10,﹣3).故選:C.【點睛】本題考查了坐標與圖形變化-旋轉:圖形或點旋轉之后要結合旋轉的角度和圖形的特殊性質來求出旋轉后的點的坐標.常見的是旋轉特殊角度如:30°,45°,10°,90°,180°.7、D【解析】如圖,把△ADF繞點A順時針旋轉90°得到△ABH,由旋轉的性質得,BH=DF,AH=AF,∠BAH=∠DAF,由已知條件得到∠EAH=∠EAF=45°,根據全等三角形的性質得到EH=EF,所以∠ANM=∠AEB,則可求得②正確;根據三角形的外角的性質得到①正確;根據相似三角形的判定定理得到△OAM∽△DAF,故③正確;根據相似三角形的性質得到∠AEN=∠ABD=45°,推出△AEN是等腰直角三角形,根據勾股定理得到AE=AN,再根據相似三角形的性質得到EF=MN,于是得到S△AEF=2S△AMN.故④正確.【詳解】如圖,把△ADF繞點A順時針旋轉90°得到△ABH由旋轉的性質得,BH=DF,AH=AF,∠BAH=∠DAF∵∠EAF=45°∴∠EAH=∠BAH+∠BAE=∠DAF+∠BAE=90°﹣∠EAF=45°∴∠EAH=∠EAF=45°在△AEF和△AEH中∴△AEF≌△AEH(SAS)∴EH=EF∴∠AEB=∠AEF∴BE+BH=BE+DF=EF,故②正確∵∠ANM=∠ADB+∠DAN=45°+∠DAN,∠AEB=90°﹣∠BAE=90°﹣(∠HAE﹣∠BAH)=90°﹣(45°﹣∠BAH)=45°+∠BAH∴∠ANM=∠AEB∴∠ANM=∠AEB=∠ANM;故③正確,∵AC⊥BD∴∠AOM=∠ADF=90°∵∠MAO=45°﹣∠NAO,∠DAF=45°﹣∠NAO∴△OAM∽△DAF故①正確連接NE,∵∠MAN=∠MBE=45°,∠AMN=∠BME∴△AMN∽△BME∴∴∵∠AMB=∠EMN∴△AMB∽△NME∴∠AEN=∠ABD=45°∵∠EAN=45°∴∠NAE=NEA=45°∴△AEN是等腰直角三角形∴AE=∵△AMN∽△BME,△AFE∽△BME∴△AMN∽△AFE∴∴∴∴S△AFE=2S△AMN故④正確故選D.【點睛】此題考查相似三角形全等三角形的綜合應用,熟練掌握相似三角形,全等三角形的判定定理是解決此類題的關鍵.8、A【解析】注意圓的半徑相等,再運用“等腰三角形兩底角相等”即可解.【詳解】連接OA,
∵OA=OB,∠B=37°
∴∠A=∠B=37°,∠O=180°-2∠B=106°.故選:A【點睛】本題考核知識點:利用了等邊對等角,三角形的內角和定理求解解題關鍵點:熟記圓心角、弧、弦的關系;三角形內角和定理.9、B【分析】根據題意和函數圖象中的數據,利用二次函數的性質可以判斷各個小題中的結論是否正確,從而可以解答本題.【詳解】∵拋物線y=ax2+bx+c(a≠0)與x軸交于點(-3,0),其對稱軸為直線,∴拋物線y=ax2+bx+c(a≠0)與x軸交于點(-3,0)和(2,0),且=,∴a=b,由圖象知:a<0,c>0,b<0,∴abc>0,故結論①正確;∵拋物線y=ax2+bx+c(a≠0)與x軸交于點(-3,0),∴9a-3b+c=0,∵a=b,∴c=-6a,∴3a+c=-3a>0,故結論②正確;∵當時,y=>0,∴<0,故結論③錯誤;當x<時,y隨x的增大而增大,當<x<0時,y隨x的增大而減小,故結論④錯誤;∵a=b,∴≤可換成≤,∵a<0,∴可得≥-1,即4m2+4m+1≥0(2m+1)2≥0,故結論⑤正確;綜上:正確的結論有①②⑤,故選:B.【點睛】本題考查了二次函數圖象與系數的關系,二次函數的性質,掌握知識點是解題關鍵.10、A【分析】將函數的解析式化成頂點式,再根據二次函數的圖象與性質即可得.【詳解】因此,二次函數的圖象特點為:開口向上,當時,y隨x的增大而減小;當時,y隨x的增大而增大則當時,二次函數取得最小值,最小值為.故選:A.【點睛】本題考查了二次函數的圖象與性質,熟記函數的圖象特征與性質是解題關鍵.11、D【分析】根據等腰三角形的性質、直角三角形的性質和相似三角形的判定方法即可判定.【詳解】解:兩個直角三角形不一定相似,因為只有一個直角相等,∴A不一定相似;兩條邊對應成比例,一個對應角相等的兩個三角形不一定相似,因為這個對應角不一定是夾角;∴B不一定相似;有一個角為40°的兩個等腰三角形不一定相似,因為40°的角可能是頂角,也可能是底角,∴C不一定相似;有一個角為100°的兩個等腰三角形一定相似,因為100°的角只能是頂角,所以兩個等腰三角形的頂角和底角分別相等,∴D一定相似;故選:D.【點睛】本題考查了等腰三角形和直角三角形的性質以及相似三角形的判定,屬于基礎題型,熟練掌握相似三角形的判定方法是關鍵.12、D【解析】把一個圖形繞某一點旋轉180°,如果旋轉后的圖形能夠與原來的圖形重合,那么這個圖形就叫做中心對稱圖形,這個點叫做對稱中心.根據中心對稱圖形的概念求解.【詳解】解:A、是軸對稱圖形,不是中心對稱圖形,故此選項錯誤;B、是軸對稱圖形,不是中心對稱圖形,故此選項錯誤;C、不是軸對稱圖形,不是中心對稱圖形,故此選項錯誤;D、不是軸對稱圖形,是中心對稱圖形,故此選項符合題意.故選:D.【點睛】此題主要考查中心對稱圖形與軸對稱圖形的識別,解題的關鍵是熟知其定義.二、填空題(每題4分,共24分)13、1;【解析】解:設圓的半徑為x,由題意得:=5π,解得:x=1,故答案為1.點睛:此題主要考查了弧長計算,關鍵是掌握弧長公式l=(弧長為l,圓心角度數為n,圓的半徑為R).14、1.【解析】試題分析:易得底數為8的冪的個位數字依次為8,2,1,6,以2個為周期,個位數字相加為0,呈周期性循環.那么讓1012除以2看余數是幾,得到相和的個位數字即可:∵1012÷2=503…1,∴循環了503次,還有兩個個位數字為8,2.∴81+81+83+82+…+81012的和的個位數字是503×0+8+2=11的個位數字.∴81+81+83+82+…+81012的和的個位數字是1.考點:探索規律題(數字的變化類——循環問題).15、2x=﹣1【分析】將x=﹣2代入方程即可求出m的值,然后根據根與系數的關系即可取出另外一個根.【詳解】解:將x=﹣2代入x2+3x+m=0,∴4﹣6+m=0,∴m=2,設另外一個根為x,∴﹣2+x=﹣3,∴x=﹣1,故答案為:2,x=﹣1【點睛】本題考查了一元二次方程ax2+bx+c=0(a≠0)根與系數的關系,若x1,x2為方程的兩個根,則x1,x2與系數的關系式:,.16、【分析】過O作BC的平行線交AC與G,由中位線的知識可得出AD:DC=1:2,根據已知和平行線分線段成比例得出AD=DG=GC,AG:GC=2:1,AO:OE=2:1,再由同高不同底的三角形中底與三角形面積的關系可求出BE:EC的比.【詳解】解:如圖,過O作OG∥BC,交AC于G,
∵O是BD的中點,
∴G是DC的中點.
又AD:DC=1:2,
∴AD=DG=GC,
∴AG:GC=2:1,AO:OE=2:1,
∴S△AOB:S△BOE=2
設S△BOE=S,S△AOB=2S,又BO=OD,
∴S△AOD=2S,S△ABD=4S,
∵AD:DC=1:2,
∴S△BDC=2S△ABD=8S,S四邊形CDOE=7S,
∴S△AEC=9S,S△ABE=3S,
∴==【點睛】本題考查平行線分線段成比例及三角形的中位線的知識,難度較大,注意熟練運用中位線定理和三角形面積公式.17、-1.【分析】設出點P的坐標,陰影部分面積等于點P的橫縱坐標的積的絕對值,把相關數值代入即可.【詳解】解:設點P的坐標為(x,y).∵P(x,y)在反比例函數y=的圖象上,∴k=xy,∴|xy|=1,∵點P在第二象限,∴k=﹣1.故答案是:﹣1.【點睛】此題考查的是已知反比例函數與矩形的面積關系,掌握反比例函數圖象上一點作x軸、y軸的垂線與坐標軸圍成的矩形的面積與反比例函數的比例系數的關系是解決此題的關鍵.18、【分析】解:如圖,連接OA、OB,易得△AOB是等邊三角形,從而可得OA=AB=4,再過點O作OM⊥AE于點M,則∠OAM=30°,AM=ME,然后解直角△AOM求得AM的長,進而可得答案.【詳解】解:如圖,連接OA、OB,則∠AOB=60°,OA=OB,∴△AOB是等邊三角形,∴OA=AB=4,過點O作OM⊥AE于點M,則∠OAM=30°,AM=ME,在直角△AOM中,,∴AE=2AM=.故答案為:.【點睛】本題考查了正多邊形和圓,作輔助線構造直角三角形、利用解直角三角形的知識求解是解題關鍵.三、解答題(共78分)19、(1)證明見解析;(2);(3).【分析】(1)連接、,根據圓內接四邊形的性質得到,求得,又點在上,于是得到結論;(2)由(1)知:又,設為,則為,根據勾股定理即可得到結論;(3)連接BD,OA,根據已知條件推出當四邊形ABOD的面積最大時,四邊形ABCD的面積最大,當OA⊥BD時,四邊形ABOD的面積最大,根據三角形和菱形的面積公式即可得到結論.【詳解】解:(1)證明:連接、,四邊形為圓內接四邊形,,,,又點在上,是的切線;(2)由(1)知:又,,設為,則為,在中,,即,,又,,;(3)連接,,,,,,,,,,,當四邊形的面積最大時,四邊形的面積最大,當時,四邊形的面積最大,四邊形的最大面積,故答案為:.【點睛】本題考查了圓的綜合題,切線的判定,勾股定理,三角形的面積的計算,正確的作出輔助線是解題的關鍵.20、(1)400,圖詳見解析;(2)B;(3)660人.【分析】(1)用E組的人數除以E組所占的百分比即可得出學生總人數;根據總人數乘以B組所占百分比可得B組的人數,利用A、C各組的人數除以總人數即得A、C兩組所占百分比,進而可補全兩幅統計圖;(2)根據中位數的定義判斷即可;(3)利用總人數乘以A、B兩組的百分比之和求解即可.【詳解】解:(1)40÷10%=400,∴抽取的學生共有400人;B組人數為:400×30%=120,A組占:100÷400=25%,C組占:80÷400=20%,補全統計圖如下:故答案為:400;(2)∵A組有100人,B組有120人,C組有80人,D組有60人,E組有40人,∴400的最中間的兩個數在B組,∴測試成績的中位數落在B組.故答案為:B;(3)1200×(25%+30%)=660,∴該校初三測試成績為優秀的學生有660人.【點睛】本題考查的是條形統計圖和扇形統計圖的綜合運用,讀懂統計圖,從不同的統計圖中得到解題的信息是解決問題的關鍵.條形統計圖能清楚地表示出每個項目的數據;扇形統計圖直接反映部分占總體的百分比大小.21、(1);(2)點的坐標為或;(3)MD長度的最大值為.【分析】(1)拋物線的對稱軸為x=1,點A坐標為(-1,0),則點B(3,0),即可求解;
(2)由S△POC=2S△BOC,則x=±2OB=6,即可求解;
(3)設:點M坐標為(x,x-3),則點D坐標為(x,x2-2x-3),則MD=x-3-x2+2x+3,即可求解.【詳解】解:(1)拋物線的對稱軸為,點坐標為,則點,故:答案為;(2)二次函數表達式為:,即:,解得:,故拋物線的表達式為:,所以由題意得:,設P(x,)則所以則,所以當時,=-21,當時,=45故點的坐標為或;(3)如圖所示,將點坐標代入一次函數得表達式得,解得:,故直線的表達式為:,設:點坐標為,則點坐標為,則,故MN長度的最大值為.【點睛】主要考查了二次函數的解析式的求法和與幾何圖形結合的綜合能力的培養.要會利用數形結合的思想把代數和幾何圖形結合起來,利用點的坐標的意義表示線段的長度,從而求出線段之間的關系.22、(1)AD=9;(2)AD=【分析】(1)連接BE,證明△ACD≌△BCE,得到AD=BE,在Rt△BAE中,AB=6,AE=3,求出BE,得到答案;(2)連接BE,證明△ACD∽△BCE,得到,求出BE的長,得到AD的長.【詳解】解:(1)如圖1,連接BE,∵∠ACB=∠DCE=90°,∴∠ACB+∠ACE=∠DCE+∠ACE,即∠BCE=∠ACD,又∵AC=BC,DC=EC,在△ACD和△BCE中,,∴△ACD≌△BCE,∴AD=BE,∵AC=BC=6,∴AB=6,∵∠BAC=∠CAE=45°,∴∠BAE=90°,在Rt△BAE中,AB=6,AE=3,∴BE=9,∴AD=9;(2)如圖2,連接BE,在Rt△ACB中,∠ABC=∠CED=30°,tan30°=,∵∠ACB=∠DCE=90°,∴∠BCE=∠ACD,∴△ACD∽△BCE,∴,∵∠BAC=60°,∠CAE=30°,∴∠BAE=90°,又AB=6,AE=8,∴BE=10,∴AD=.考點:相似三角形的判定與性質;全等三角形的判定與性質;勾股定理.23、(1)(6﹣1x);(1)y=﹣40x1+140x+2;(3)預備資金4元購買材料一定夠用,理由見解析【分析】(1)根據大正方形的邊長減去兩個小長方形的寬即可求解;
(1)根據總費用等于兩種材料的費用之和即可求解;
(3)利用二次函數的性質和最值解答即可.【詳解】解:(1)∵AH=GQ=x,AD=6,
∴MQ=6-1x;
故答案為:6-1x;(1)根據題意,得AH=x,AE=6﹣x,S甲=4S長方形AENH=4x(6﹣x)=14x﹣4x1,S乙=S正方形MNQP=(6﹣1x)1=36﹣14x+4x1.∴y=50(14x﹣4x1)+40(36﹣14x+4x1)=﹣40x1+140x+2.答:y關于x的函數解析式為y=﹣40x1+140x+2.(3)預備資金4元購買材料一定夠用.理由如下:∵y=﹣40x1+140x+2=﹣40(x-3)1+1800,由﹣40<0,可知拋物線開口向下,在對稱軸的左側,y隨x的增大而增大.由x-3=0可知,拋物線的對稱軸為直線x=3.∴當x<3時,y隨x的增大而增大.∵中心區的邊長不小于1米,即6﹣1x≥1,解得x≤1,又x>0,∴0<x≤1.當x=1時,y=﹣40(x-3)1+1800=﹣40(1-3)1+1800=4,∴當0<x≤1時,y≤4.∴預備資金4元購買材料一定夠用.答:預備資金4元購買材料一定夠用.【點睛】此題主要考查了二次函數的應用以及配方法求最值和正方形的性質等知識,正確得出各部分的邊長是解題關鍵.24、A處與燈塔B相距109海里.【解析】直接過點C作CM⊥AB求出AM,CM的長,再利用銳角三角函數關系得出BM的長即可得出答案.【詳解】過點C作CM⊥AB,垂足為M,在Rt△ACM中,∠MAC=90°﹣45°=45°,則∠MCA=45°,∴AM=MC,由勾股定理得:AM2+MC2=AC2=(20×2)2,解得:AM=CM=40,∵∠ECB=15°,∴∠BCF=90°﹣15°=75°,∴∠B=∠BCF﹣∠MAC=75°﹣45°=30°,在Rt△BCM中,tanB=tan30°=,即,∴BM=40,∴AB=AM+BM=40+40≈40+40×1.73≈109(海里),答:A處與燈塔B相距109海里.【點睛】本題考查了解直角三角形的應用,正確作出輔助線構造直角三角形是解題的關鍵.25、(1)作圖見解析,;(2)作圖見解析,;(3)成中心對稱,對稱中心坐標是【分析】(1)根據關于軸對稱的點的特征找到A,C的對應點,然后順次連接即可,再根據關于軸對稱的點橫坐標互為相反數,縱坐標相同即可寫出的坐標;(2)將繞原點O順時針旋轉90°得到三點的對應點,然后順次連接即可,再根據直角坐標系即可得到的坐標;(3)利用成中心對稱的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 種子繁育員評估標準試題及答案
- 面試技巧籃球裁判員考試試題及答案
- 職業生涯的重要里程碑2024年體育經紀人試題及答案
- 2024年模具設計師考試考前準備試題及答案
- 2024年裁判員考試反饋機制試題及答案
- 教你解鎖農作物種子繁育員考試的試題答案
- 課程綜合裁判員試題及答案
- 學校黨支部共建協議書(2篇)
- 飛行計劃重要性分析的試題及答案
- 2025年中國加長割炬市場調查研究報告
- GB/T 17640-2023土工合成材料長絲機織土工布
- 園區安全生產管理協議書范本
- 免疫學(全套課件475P)
- 公司供應商準入申請表
- 安全工器具安全管理規定(一)
- SRE Google運維解密(中文版)
- 房室結折返性心動過速課件整理
- 淺談作文素材積累與運用
- 雨水排污監理實施細則安全監理細則范本模板
- NB/T 10755-2021煤礦在用架空乘人裝置定期安全檢測檢驗規范
- SB/T 10482-2008預制肉類食品質量安全要求
評論
0/150
提交評論