2024屆河北省滄州市滄縣中考數學考試模擬沖刺卷含解析_第1頁
2024屆河北省滄州市滄縣中考數學考試模擬沖刺卷含解析_第2頁
2024屆河北省滄州市滄縣中考數學考試模擬沖刺卷含解析_第3頁
2024屆河北省滄州市滄縣中考數學考試模擬沖刺卷含解析_第4頁
2024屆河北省滄州市滄縣中考數學考試模擬沖刺卷含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆河北省滄州市滄縣中考數學考試模擬沖刺卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題(共10小題,每小題3分,共30分)1.如圖,共有12個大不相同的小正方形,其中陰影部分的5個小正方形是一個正方體的表面展開圖的一部分.現從其余的小正方形中任取一個涂上陰影,則能構成這個正方體的表面展開圖的概率是()A. B. C. D.2.如圖,等邊三角形ABC的邊長為3,N為AC的三等分點,三角形邊上的動點M從點A出發,沿A→B→C的方向運動,到達點C時停止.設點M運動的路程為x,MN2=y,則y關于x的函數圖象大致為A.B.C.D.3.若方程x2﹣3x﹣4=0的兩根分別為x1和x2,則+的值是()A.1 B.2 C.﹣ D.﹣4.如圖,BD為⊙O的直徑,點A為弧BDC的中點,∠ABD=35°,則∠DBC=()A.20° B.35° C.15° D.45°5.在直角坐標系中,我們把橫、縱坐標都為整數的點叫做整點.對于一條直線,當它與一個圓的公共點都是整點時,我們把這條直線稱為這個圓的“整點直線”.已知⊙O是以原點為圓心,半徑為圓,則⊙O的“整點直線”共有()條A.7 B.8 C.9 D.106.某公園有A、B、C、D四個入口,每個游客都是隨機從一個入口進入公園,則甲、乙兩位游客恰好從同一個入口進入公園的概率是()A. B. C. D.7.如圖,點D、E分別為△ABC的邊AB、AC上的中點,則△ADE的面積與四邊形BCED的面積的比為()A.1:2 B.1:3 C.1:4 D.1:18.某種計算器標價240元,若以8折優惠銷售,仍可獲利20%,那么這種計算器的進價為()A.152元 B.156元 C.160元 D.190元9.若一元二次方程x2﹣2kx+k2=0的一根為x=﹣1,則k的值為()A.﹣1 B.0 C.1或﹣1 D.2或010.如圖,用一個半徑為6cm的定滑輪帶動重物上升,假設繩索(粗細不計)與滑輪之間沒有滑動,繩索端點G向下移動了3πcm,則滑輪上的點F旋轉了()A.60° B.90° C.120° D.45°二、填空題(本大題共6個小題,每小題3分,共18分)11.化簡:3212.無錫大劇院演出歌劇時,信號經電波轉送,收音機前的北京觀眾經過0.005秒以聽到,這個數據用科學記數法可以表示為_____秒.13.已知x1,x2是方程x2+6x+3=0的兩實數根,則的值為_____.14.某物流倉儲公司用如圖A,B兩種型號的機器人搬運物品,已知A型機器人比B型機器人每小時多搬運20kg,A型機器人搬運1000kg所用時間與B型機器人搬運800kg所用時間相等,設B型機器人每小時搬運xkg物品,列出關于x的方程為_____.15.在平面直角坐標系的第一象限內,邊長為1的正方形ABCD的邊均平行于坐標軸,A點的坐標為(a,a),如圖,若曲線y=(x>0)與此正方形的邊有交點,則a的取值范圍是_______.16.如圖,某景區的兩個景點A、B處于同一水平地面上、一架無人機在空中沿MN方向水平飛行進行航拍作業,MN與AB在同一鉛直平面內,當無人機飛行至C處時、測得景點A的俯角為45°,景點B的俯角為30°,此時C到地面的距離CD為100米,則兩景點A、B間的距離為__米(結果保留根號).三、解答題(共8題,共72分)17.(8分)由于持續高溫和連日無雨,某水庫的蓄水量隨時間的增加而減少,已知原有蓄水量y1(萬m3)與干旱持續時間x(天)的關系如圖中線段l1所示,針對這種干旱情況,從第20天開始向水庫注水,注水量y2(萬m3)與時間(天)的關系如圖中線段l2所示(不考慮其他因素).(1)求原有蓄水量y1(萬m3)與時間(天)的函數關系式,并求當x=20時的水庫總蓄水量.(2)求當0≤x≤60時,水庫的總蓄水量y萬(萬m3)與時間x(天)的函數關系式(注明x的范圍),若總蓄水量不多于900萬m3為嚴重干旱,直接寫出發生嚴重干旱時x的范圍.18.(8分)某年級組織學生參加夏令營活動,本次夏令營分為甲、乙、丙三組進行活動.下面兩幅統計圖反映了學生報名參加夏令營的情況,請你根據圖中的信息回答下列問題:該年級報名參加丙組的人數為;該年級報名參加本次活動的總人數,并補全頻數分布直方圖;根據實際情況,需從甲組抽調部分同學到丙組,使丙組人數是甲組人數的3倍,應從甲組抽調多少名學生到丙組?19.(8分)某品牌牛奶供應商提供A,B,C,D四種不同口味的牛奶供學生飲用.某校為了了解學生對不同口味的牛奶的喜好,對全校訂牛奶的學生進行了隨機調查,并根據調查結果繪制了如下兩幅不完整的統計圖.根據統計圖的信息解決下列問題:本次調查的學生有多少人?補全上面的條形統計圖;扇形統計圖中C對應的中心角度數是;若該校有600名學生訂了該品牌的牛奶,每名學生每天只訂一盒牛奶,要使學生能喝到自己喜歡的牛奶,則該牛奶供應商送往該校的牛奶中,A,B口味的牛奶共約多少盒?20.(8分)如圖,小明同學用自制的直角三角形紙板DEF測量樹的高度AB,他調整自己的位置,設法使斜邊DF保持水平,并且邊DE與點B在同一直線上,已知紙板的兩條直角邊DE=0.4m,EF=0.2m,測得邊DF離地面的高度AC=1.5m,CD=8m,求樹高.21.(8分)如圖,點E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF與DE交于點O.求證:AB=DC;試判斷△OEF的形狀,并說明理由.22.(10分)先化簡,再計算:其中.23.(12分)先化簡后求值:已知:x=﹣2,求的值.24.灞橋區教育局為了了解七年級學生參加社會實踐活動情況,隨機抽取了鐵一中濱河學部分七年級學生2016﹣2017學年第一學期參加實踐活動的天數,并用得到的數據繪制了兩幅統計圖,下面給出了兩幅不完整的統計圖.請根據圖中提供的信息,回答下列問題:(1)a=%,并補全條形圖.(2)在本次抽樣調查中,眾數和中位數分別是多少?(3)如果該區共有七年級學生約9000人,請你估計活動時間不少于6天的學生人數大約有多少?

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解題分析】

由正方體表面展開圖的形狀可知,此正方體還缺一個上蓋,故應在圖中四塊相連的空白正方形中選一塊,再根據概率公式解答即可.【題目詳解】因為共有12個大小相同的小正方形,其中陰影部分的5個小正方形是一個正方體的表面展開圖的一部分,所以剩下7個小正方形.在其余的7個小正方形中任取一個涂上陰影,能構成這個正方體的表面展開圖的小正方形有4個,因此先從其余的小正方形中任取一個涂上陰影,能構成這個正方體的表面展開圖的概率是.故選D.【題目點撥】本題考查了概率公式,用到的知識點為:概率=所求情況數與總情況數之比,掌握概率公式是本題的關鍵.2、B【解題分析】分析:分析y隨x的變化而變化的趨勢,應用排它法求解,而不一定要通過求解析式來解決:∵等邊三角形ABC的邊長為3,N為AC的三等分點,∴AN=1。∴當點M位于點A處時,x=0,y=1。①當動點M從A點出發到AM=的過程中,y隨x的增大而減小,故排除D;②當動點M到達C點時,x=6,y=3﹣1=2,即此時y的值與點M在點A處時的值不相等,故排除A、C。故選B。3、C【解題分析】試題分析:找出一元二次方程的系數a,b及c的值,利用根與系數的關系求出兩根之和與兩根之積,然后利用異分母分式的變形,將求出的兩根之和x1+x2=3與兩根之積x1?x2=﹣4代入,即可求出=.故選C.考點:根與系數的關系4、A【解題分析】

根據∠ABD=35°就可以求出的度數,再根據,可以求出,因此就可以求得的度數,從而求得∠DBC【題目詳解】解:∵∠ABD=35°,∴的度數都是70°,∵BD為直徑,∴的度數是180°﹣70°=110°,∵點A為弧BDC的中點,∴的度數也是110°,∴的度數是110°+110°﹣180°=40°,∴∠DBC==20°,故選:A.【題目點撥】本題考查了等腰三角形性質、圓周角定理,主要考查學生的推理能力.5、D【解題分析】試題分析:根據圓的半徑可知:在圓上的整數點為(2,2)、(2,-2),(-2,-2),(-2,2)這四個點,經過任意兩點的“整點直線”有6條,經過其中的任意一點且圓相切的“整點直線”有4條,則合計共有10條.6、B【解題分析】

畫樹狀圖列出所有等可能結果,從中確定出甲、乙兩位游客恰好從同一個入口進入公園的結果數,再利用概率公式計算可得.【題目詳解】畫樹狀圖如下:由樹狀圖知共有16種等可能結果,其中甲、乙兩位游客恰好從同一個入口進入公園的結果有4種,所以甲、乙兩位游客恰好從同一個入口進入公園的概率為=,故選B.【題目點撥】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結果n,再從中選出符合事件A或B的結果數目m,然后利用概率公式求事件A或B的概率.7、B【解題分析】

根據中位線定理得到DE∥BC,DE=BC,從而判定△ADE∽△ABC,然后利用相似三角形的性質求解.【題目詳解】解:∵D、E分別為△ABC的邊AB、AC上的中點,∴DE是△ABC的中位線,∴DE∥BC,DE=BC,∴△ADE∽△ABC,∴△ADE的面積:△ABC的面積==1:4,∴△ADE的面積:四邊形BCED的面積=1:3;故選B.【題目點撥】本題考查三角形中位線定理及相似三角形的判定與性質.8、C【解題分析】【分析】設進價為x元,依題意得240×0.8-x=20x℅,解方程可得.【題目詳解】設進價為x元,依題意得240×0.8-x=20x℅解得x=160所以,進價為160元.故選C【題目點撥】本題考核知識點:列方程解應用題.解題關鍵點:找出相等關系.9、A【解題分析】

把x=﹣1代入方程計算即可求出k的值.【題目詳解】解:把x=﹣1代入方程得:1+2k+k2=0,解得:k=﹣1,故選:A.【題目點撥】此題考查了一元二次方程的解,方程的解即為能使方程左右兩邊相等的未知數的值.10、B【解題分析】

由弧長的計算公式可得答案.【題目詳解】解:由圓弧長計算公式,將l=3π代入,可得n=90,故選B.【題目點撥】本題主要考查圓弧長計算公式,牢記并運用公式是解題的關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、-6【解題分析】

根據二次根式的乘法運算法則以及絕對值的性質和二次根式的化簡分別化簡整理得出即可:【題目詳解】32故答案為-612、5【解題分析】

絕對值小于1的正數也可以利用科學記數法表示,一般形式為a×10-n,與較大數的科學記數法不同的是其所使用的是負指數冪,指數由原數左邊起第一個不為零的數字前面的0的個數所決定.【題目詳解】0.005=5×10-1,故答案為:5×10-1.【題目點撥】本題考查用科學記數法表示較小的數,一般形式為a×10-n,其中1≤|a|<10,n為由原數左邊起第一個不為零的數字前面的0的個數所決定.13、1.【解題分析】試題分析:∵,是方程的兩實數根,∴由韋達定理,知,,∴===1,即的值是1.故答案為1.考點:根與系數的關系.14、【解題分析】

設B型機器人每小時搬運x

kg物品,則A型機器人每小時搬運(x+20)kg物品,根據“A型機器人搬運1000kg所用時間與B型機器人搬運800kg所用時間相等”可列方程.【題目詳解】設B型機器人每小時搬運x

kg物品,則A型機器人每小時搬運(x+20)kg物品,根據題意可得,故答案為.【題目點撥】本題考查了由實際問題抽象出分式方程,解題的關鍵是根據數量關系列出關于x的分式方程.本題屬于基礎題,難度不大,解決該題型題目時,根據數量關系列出方程是關鍵.15、【解題分析】

因為A點的坐標為(a,a),則C(a﹣1,a﹣1),根據題意只要分別求出當A點或C點在曲線上時a的值即可得到答案.【題目詳解】解:∵A點的坐標為(a,a),∴C(a﹣1,a﹣1),當C在雙曲線y=時,則a﹣1=,解得a=+1;當A在雙曲線y=時,則a=,解得a=,∴a的取值范圍是≤a≤+1.故答案為≤a≤+1.【題目點撥】本題主要考查反比例函數與幾何圖形的綜合問題,解此題的關鍵在于根據題意找到關鍵點,然后將關鍵點的坐標代入反比例函數求得確定值即可.16、100+100【解題分析】【分析】由已知可得∠ACD=∠MCA=45°,∠B=∠NCB=30°,繼而可得∠DCB=60°,從而可得AD=CD=100米,DB=100米,再根據AB=AD+DB計算即可得.【題目詳解】∵MN//AB,∠MCA=45°,∠NCB=30°,∴∠ACD=∠MCA=45°,∠B=∠NCB=30°,∵CD⊥AB,∴∠CDA=∠CDB=90°,∠DCB=60°,∵CD=100米,∴AD=CD=100米,DB=CD?tan60°=CD=100米,∴AB=AD+DB=100+100(米),故答案為:100+100.【題目點撥】本題考查了解直角三角形的應用﹣﹣仰角俯角問題,解題的關鍵是借助俯角構造直角三角形并解直角三角形.注意方程思想與數形結合思想的應用.三、解答題(共8題,共72分)17、(1)y1=-20x+1200,800;(2)15≤x≤40.【解題分析】

(1)根據圖中的已知點用待定系數法求出一次函數解析式(2)設y2=kx+b,把(20,0)和(60,1000)代入求出解析式,在已知范圍內求出解即可.【題目詳解】解:(1)設y1=kx+b,把(0,1200)和(60,0)代入得解得,所以y1=-20x+1200,當x=20時,y1=-20×20+1200=800,(2)設y2=kx+b,把(20,0)和(60,1000)代入得則,所以y2=25x-500,當0≤x≤20時,y=-20x+1200,當20<x≤60時,y=y1+y2=-20x+1200+25x-500=5x+700,由題意解得該不等式組的解集為15≤x≤40所以發生嚴重干旱時x的范圍為15≤x≤40.【題目點撥】此題重點考察學生對一次函數和一元一次不等式的實際應用能力,掌握一次函數和一元一次不等式的解法是解題的關鍵.18、(1)21人;(2)10人,見解析(3)應從甲抽調1名學生到丙組【解題分析】(1)參加丙組的人數為21人;(2)21÷10%=10人,則乙組人數=10-21-11=10人,如圖:(3)設需從甲組抽調x名同學到丙組,根據題意得:3(11-x)=21+x解得x=1.答:應從甲抽調1名學生到丙組(1)直接根據條形統計圖獲得數據;(2)根據丙組的21人占總體的10%,即可計算總體人數,然后計算乙組的人數,補全統計圖;(3)設需從甲組抽調x名同學到丙組,根據丙組人數是甲組人數的3倍列方程求解19、(1)150人;(2)補圖見解析;(3)144°;(4)300盒.【解題分析】

(1)根據喜好A口味的牛奶的學生人數和所占百分比,即可求出本次調查的學生數.(2)用調查總人數減去A、B、D三種喜好不同口味牛奶的人數,求出喜好C口味牛奶的人數,補全統計圖.再用360°乘以喜好C口味的牛奶人數所占百分比求出對應中心角度數.(3)用總人數乘以A、B口味牛奶喜歡人數所占的百分比得出答案.【題目詳解】解:(1)本次調查的學生有30÷20%=150人;(2)C類別人數為150﹣(30+45+15)=60人,補全條形圖如下:(3)扇形統計圖中C對應的中心角度數是360°×=144°故答案為144°(4)600×()=300(人),答:該牛奶供應商送往該校的牛奶中,A,B口味的牛奶共約300盒.【題目點撥】本題考查了條形統計圖和扇形統計圖的綜合運用,讀懂統計圖,從不同的統計圖中得出必要的信息是解題的關鍵.20、樹高為5.5米【解題分析】

根據兩角相等的兩個三角形相似,可得△DEF∽△DCB,利用相似三角形的對邊成比例,可得,代入數據計算即得BC的長,由AB=AC+BC,即可求出樹高.【題目詳解】∵∠DEF=∠DCB=90°,∠D=∠D,∴△DEF∽△DCB∴,∵DE=0.4m,EF=0.2m,CD=8m,∴,∴CB=4(m),∴AB=AC+BC=1.5+4=5.5(米)答:樹高為5.5米.【題目點撥】本題考查了相似三角形的應用,解題的關鍵是從實際問題中整理出相似三角形的模型.21、(1)證明略(2)等腰三角形,理由略【解題分析】

證明:(1)∵BE=CF,∴BE+EF=CF+EF,即BF=CE.又∵∠A=∠D,∠B=∠C,∴△ABF≌△DCE(AAS),∴AB=DC.(2)△OEF為等腰三角形理由如下:∵△ABF≌△DCE,∴∠AFB=∠DEC.∴OE=OF

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論