四川省成都市經開區實驗中學2023-2024學年高二數學第一學期期末質量檢測模擬試題含解析_第1頁
四川省成都市經開區實驗中學2023-2024學年高二數學第一學期期末質量檢測模擬試題含解析_第2頁
四川省成都市經開區實驗中學2023-2024學年高二數學第一學期期末質量檢測模擬試題含解析_第3頁
四川省成都市經開區實驗中學2023-2024學年高二數學第一學期期末質量檢測模擬試題含解析_第4頁
四川省成都市經開區實驗中學2023-2024學年高二數學第一學期期末質量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

四川省成都市經開區實驗中學2023-2024學年高二數學第一學期期末質量檢測模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分又不必要條件2.數學家歌拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直線上,且重心到外心的距離是重心到垂心距離的一半.這條直線被后人稱為三角形的歐拉線.已知的三個頂點分別為,,,則的歐拉線方程是()A. B.C. D.3.如圖,在平行六面體中,設,,,用基底表示向量,則()A. B.C. D.4.已知實數a,b滿足,則下列不等式中恒成立的是()A. B.C. D.5.甲、乙、丙、丁、戊共5名同學進行勞動技術比賽,決出第1名到第5名的名次.甲和乙去詢問成績,回答者對甲說:“很遺憾,你和乙都沒有得到冠軍.”對乙說:“你當然不會是最差的.”從這兩個回答分析,5人的名次排列方式共有()種A.54 B.72C.96 D.1206.已知等比數列的前3項和為3,,則()A. B.4C. D.17.以軸為對稱軸,拋物線通徑的長為8,頂點在坐標原點的拋物線的方程是()A. B.C.或 D.或8.已知定義在上的函數的導函數為,且恒有,則下列不等式一定成立的是()A. B.C. D.9.在空間直角坐標系中,已知點,,則線段的中點坐標與向量的模長分別是()A.;5 B.;C.; D.;10.直線是雙曲線的一條漸近線,,分別是雙曲線左、右焦點,P是雙曲線上一點,且,則()A.2 B.6C.8 D.1011.的展開式中,常數項為()A. B.C. D.12.已知,則下列不等式一定成立的是()A B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知拋物線的準線方程為,則________14.在數列中,若,則該數列的通項公式__________15.如圖是一個邊長為4的正方形二維碼,為了測算圖中黑色部分的面積,在正方形區域內隨機投擲1600個點,其中落入白色部分的有700個點,據此可估計黑色部分的面積為______________16.已知空間直角坐標系中,點,,若,與同向,則向量的坐標為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在數列中,,且.(1)證明;數列是等比數列.(2)若,求數列的前n項和.18.(12分)已知如圖①,在菱形ABCD中,且,為AD的中點,將沿BE折起使,得到如圖②所示的四棱錐,在四棱錐中,求解下列問題:(1)求證:BC平面ABE;(2)若P為AC中點,求二面角的余弦值.19.(12分)已知拋物線E:過點Q(1,2),F為其焦點,過F且不垂直于x軸的直線l交拋物線E于A,B兩點,動點P滿足△PAB的垂心為原點O.(1)求拋物線E的方程;(2)求證:動點P在定直線m上,并求的最小值.20.(12分)已知在平面直角坐標系中,圓A:的圓心為A,過點B(,0)任作直線l交圓A于點C、D,過點B作與AD平行的直線交AC于點E.(1)求動點E的軌跡方程;(2)設動點E的軌跡與y軸正半軸交于點P,過點P且斜率為k1,k2的兩直線交動點E的軌跡于M、N兩點(異于點P),若,證明:直線MN過定點.21.(12分)已知函數(1)當時,求在區間上的最值;(2)若在定義域內有兩個零點,求的取值范圍22.(10分)在四棱錐中,平面,,,,,分別是的中點.(1)求證:平面;(2)求證:平面;(3)求直線與平面所成角的正弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】由三角函數的單調性直接判斷是否能推出,反過來判斷時,是否能推出.【詳解】當時,利用正弦函數的單調性知;當時,或.綜上可知“”是“”的充分不必要條件.故選:A【點睛】本題考查判斷充分必要條件,三角函數性質,意在考查基本判斷方法,屬于基礎題型.2、B【解析】根據的三個頂點坐標,先求解出重心的坐標,然后再根據三個點坐標求解任意兩條垂直平分線的方程,聯立方程,即可算出外心的坐標,最后根據重心和外心的坐標使用點斜式寫出直線方程.【詳解】由題意可得的重心為.因為,,所以線段的垂直平分線的方程為.因為,,所以直線的斜率,線段的中點坐標為,則線段的垂直平分線的方程為.聯立,解得,則的外心坐標為,故的歐拉線方程是,即故選:B.3、B【解析】直接利用空間向量基本定理求解即可【詳解】因為在平行六面體中,,,,所以,故選:B4、D【解析】利用特殊值排除錯誤選項,利用函數單調性證明正確選項.【詳解】時,,但,所以A選項錯誤.時,,但,所以B選項錯誤.時,,但,所以C選項錯誤.在上遞增,所以,即D選項正確.故選:D5、A【解析】根據題意,分2種情況討論:①、甲是最后一名,則乙可以為第二、三、四名,剩下的三人安排在其他三個名次,②、甲不是最后一名,甲乙需要排在第二、三、四名,剩下的三人安排在其他三個名次,由加法原理計算可得答案【詳解】根據題意,甲乙都沒有得到冠軍,而乙不是最后一名,分2種情況討論:①甲是最后一名,則乙可以為第二、三、四名,即乙有3種情況,剩下的三人安排在其他三個名次,有種情況,此時有種名次排列情況;②甲不是最后一名,甲乙需要排在第二、三、四名,有種情況,剩下的三人安排在其他三個名次,有種情況,此時有種名次排列情況;則一共有種不同的名次情況,故選:A6、D【解析】設等比數列公比為,由已知結合等比數列的通項公式可求得,,代入即可求得結果.【詳解】設等比數列的公比為,由,得即,又,即又,,解得又等比數列的前3項和為3,故,即,解得故選:D7、C【解析】由分焦點在軸的正半軸上和焦點在軸的負半軸上,兩種情況討論設出方程,根據,即可求解.【詳解】由題意,拋物線的頂點在原點,以軸為對稱軸,且通經長為8,當拋物線的焦點在軸的正半軸上時,設拋物線的方程為,可得,解得,所以拋物線方程為;當拋物線的焦點在軸的負半軸上時,設拋物線的方程為,可得,解得,所以拋物線方程為,所以所求拋物線的方程為.故選:C.8、D【解析】構造函數,用導數判斷函數單調性,即可求解.【詳解】根據題意,令,其中,則,∵,∴,∴在上為單調遞減函數,∴,即,,則錯誤;,即,則錯誤;,即,則錯誤;,即,則正確;故選:.9、B【解析】根據給定條件利用中點坐標公式及空間向量模長的坐標表示計算作答.【詳解】因點,,所以線段的中點坐標為,.故選:B10、C【解析】根據漸近線可求出a,再由雙曲線定義可求解.【詳解】因為直線是雙曲線的一條漸近線,所以,,又或,或(舍去),故選:C11、A【解析】寫出展開式通項,令的指數為零,求出參數的值,代入通項計算即可得解.【詳解】的展開式通項為,令,可得,因此,展開式中常數項為.故選:A.12、B【解析】運用不等式的性質及舉反例的方法可求解.【詳解】對于A,如,滿足條件,但不成立,故A不正確;對于B,因為,所以,所以,故B正確;對于C,因為,所以,所以不成立,故C不正確;對于D,因為,所以,所以,故D不正確.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由準線方程的表達式構建方程,求得答案.【詳解】因為準線方程為,所以故答案為:4【點睛】本題考查拋物線中準線的方程表示,屬于基礎題.14、【解析】由已知可得數列是以為首項,3為公比的等比數列,結合等比數列通項公式即可得解.【詳解】解:由在數列中,若,則數列是以為首項,為公比的等比數列,由等比數列通項公式可得,故答案為:.【點睛】本題考查了等比數列通項公式的求法,重點考查了運算能力,屬基礎題.15、9【解析】先根據點數求解概率,再結合幾何概型求解黑色部分的面積【詳解】由題設可估計落入黑色部分概率設黑色部分的面積為,由幾何概型計算公式可得解得故答案為:916、【解析】求出坐標,根據給條件表示出坐標,利用向量模的坐標表示計算作答.【詳解】因,,則,因與同向,則設,因此,,于是得,解得,則,所以向量的坐標為.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2).【解析】(1)根據遞推公式,結合等差數列的定義、等比數列的定義進行證明即可;(2)運用裂項相消法進行求解即可.【小問1詳解】∵,∴,又∵,∴,∴數列是首項為0,公差為1的等差數列,∴,∴,從而,∴數列是首項為2,公比為2的等比數列;【小問2詳解】由(1)知,則,∴,∴.18、(1)證明見解析;(2)【解析】(1)利用題中所給的條件證明,,因為,所以,,即可證明平面;(2)先證明平面,以為坐標原點,,,的方向分別為軸,軸,軸,建立如圖所示的空間直角坐標系,求出平面的一個法向量,平面的一個法向量,利用向量的夾角公式即可求解【詳解】(1)在圖①中,連接,如圖所示:因為四邊形為菱形,,所以是等邊三角形.因為為的中點,所以,.又,所以.在圖②中,,所以,即.因為,所以,.又,,平面.所以平面.(2)由(1)知,,因為,,平面.所以平面.以為坐標原點,,,的方向分別為軸,軸,軸,建立如圖所示的空間直角坐標系:則,,,,.因為為的中點,所以.所以,.設平面的一個法向量為,由得.令,得,,所以.設平面的一個法向量為.因為,由得令,,,得則,由圖象可知二面角為銳角,所以二面角的余弦值為.19、(1);(2)證明見解析,的最小值為.【解析】(1)將點的坐標代入拋物線方程,由此求得的值,進而求得拋物線的方程.(2)設出直線的方程,聯立直線的方程與拋物線的方程,寫出韋達定理,設出直線的方程,聯立直線的方程求得的坐標,由此判斷出動點在定直線上.求得的表達式,利用基本不等式求得其最小值.【詳解】(1)將點坐標代入拋物線方程得,所以.(2)由(1)知拋物線的方程為,所以,設直線的方程為,設,由消去得,所以.由于為三角形的垂心,所以,所以直線的方程為,即.同理可求得直線的方程為.由,結合,解得,所以在定直線上.直線的方程為,到直線的距離為,到直線的距離為.所以,當且僅當時取等號.所以的最小值為.【點睛】本小題主要考查拋物線方程的求法,考查直線和拋物線的位置關系,考查拋物線中三角形面積的有關計算,屬于中檔題.20、(1)(2)證明見解析【解析】(1)作出圖象,易知|EB|+|EA|為定值,根據橢圓定義即可判斷點E的軌跡,從而寫出其軌跡方程;(2)設,當直線MN斜率存在時,設直線MN的方程為:,聯立MN方程和E的軌跡方程得根與系數的關系,根據解出k與m的關系即可以判斷MN過定點;最后再考慮MN斜率不存在時是否也過該定點即可.【小問1詳解】由圓A:可得(,∴圓心A(-,0),圓的半徑r=8,,,可得,,,由橢圓的定義可得:點E的軌跡是以A(,0)、B(,0)為焦點,2a=8的橢圓,即a=4,c=,∴=16-7=9,∴動點E的軌跡方程為;【小問2詳解】由(1)知,P(0,3),設,當直線MN的斜率存在時,設直線MN的方程為:,由,可得,∴,,∵,∴,即,整理可得:,∴k=m+3或m=3,當m=3時,直線MN的方程為:,此時過點P(0,3)不符合題意,∴k=m+3,∴直線MN的方程為:此時直線MN過點(-1,-3),當直線MN的斜率不存在時,,,解得,此時直線MN的方程為:,過點(-1,-3),綜上所述:直線MN過定點(-1,-3).21、(1),;(2).【解析】(1)當時,求出導函數,求出函數得單調區間,即可求出在區間上的最值;(2)由,分離參數得,根據函數得單調性作圖,結合圖像即可得出答案.【詳解】解:(1)當時,,,∴在單調遞減,在單調遞增,,,∴,(2),則,∴在單調遞增,在單調遞減,,當時,,當時,,作出函數和得圖像,∴由圖象可得,.22、(1)證明見解析;(2)證明見解析;(3).【解析

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論