吉林省松原市油田第十一中學2023年高二上數學期末預測試題含解析_第1頁
吉林省松原市油田第十一中學2023年高二上數學期末預測試題含解析_第2頁
吉林省松原市油田第十一中學2023年高二上數學期末預測試題含解析_第3頁
吉林省松原市油田第十一中學2023年高二上數學期末預測試題含解析_第4頁
吉林省松原市油田第十一中學2023年高二上數學期末預測試題含解析_第5頁
已閱讀5頁,還剩9頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

吉林省松原市油田第十一中學2023年高二上數學期末預測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若直線與直線垂直,則a的值為()A.2 B.1C. D.2.已知是拋物線的焦點,為拋物線上的動點,且的坐標為,則的最小值是A. B.C. D.3.已知雙曲線=1的一條漸近線方程為x-4y=0,其虛軸長為()A.16 B.8C.2 D.14.已知函數在定義域內單調遞減,則實數的取值范圍是()A. B.C. D.5.已知直線和平面,且在上,不在上,則下列判斷錯誤的是()A.若,則存在無數條直線,使得B.若,則存在無數條直線,使得C.若存在無數條直線,使得,則D.若存在無數條直線,使得,則6.下列命題錯誤的是()A.命題“若,則”的逆否命題為“若,則”B.命題“若,則”的否命題為“若,則”C.若命題p:或;命題q:或,則是的必要不充分條件D.“”是“”的充分不必要條件7.已知直線,若異面,,則的位置關系是()A.異面 B.相交C.平行或異面 D.相交或異面8.對任意實數k,直線與圓的位置關系是()A.相交 B.相切C.相離 D.與k有關9.人教A版選擇性必修二教材的封面圖案是斐波那契螺旋線,它被譽為自然界最完美的“黃金螺旋”,自然界存在很多斐波那契螺旋線的圖案,例如向日葵、鸚鵡螺等.斐波那契螺旋線的畫法是:以斐波那契數1,1,2,3,5,8,…為邊長的正方形拼成長方形,然后在每個正方形中畫一個圓心角為90°的圓弧,這些圓弧所連起來的弧線就是斐波那契螺旋線.下圖為該螺旋線在正方形邊長為1,1,2,3,5,8的部分,如圖建立平面直角坐標系(規定小方格的邊長為1),則接下來的一段圓弧所在圓的方程為()A. B.C. D.10.已知數列為等比數列,,則的值為()A. B.C. D.211.在中,角A,B,C所對的邊分別為a,b,c,若,,的面積為10,則的值為()A. B.C. D.12.設集合,,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在等差數列中,前n項和記作,若,則______14.已知空間向量,且,則___________.15.已知,是雙曲線的兩個焦點,以線段為邊作正,若邊的中點在雙曲線上,則雙曲線的離心率____________.16.已知曲線在點處的切線的斜率為,則______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某市對排污水進行綜合治理,征收污水處理費,系統對各廠一個月內排出的污水量x噸收取的污水處理費y元,運行程序如圖所示:INPUTxIFTHENELSEIFTHENELSEENDIFENDIFPRINTyEND(1)請寫出y與x的函數關系式;(2)求排放污水150噸的污水處理費用.18.(12分)已知函數(1)求曲線在點(e,)的切線方程;(2)求函數的單調區間.19.(12分)中,內角、、所對的邊為、、,.(1)求角的大小;(2)若、、成等差數列,且,求邊長的值.20.(12分)在中,內角的對邊分別是,且(1)求角的大小(2)若,且,求的面積21.(12分)已知函數.(Ⅰ)求的單調遞減區間;(Ⅱ)若當時,恒成立,求實數a的取值范圍.22.(10分)某品牌餐飲公司準備在10個規模相當的地區開設加盟店,為合理安排各地區加盟店的個數,先在其中5個地區試點,得到試點地區加盟店個數分別為1,2,3,4,5時,單店日平均營業額(萬元)的數據如下:加盟店個數(個)12345單店日平均營業額(萬元)10.910.297.871(參考數據及公式:,,線性回歸方程,其中,.)(1)求單店日平均營業額(萬元)與所在地區加盟店個數(個)的線性回歸方程;(2)根據試點調研結果,為保證規模和效益,在其他5個地區,該公司要求同一地區所有加盟店的日平均營業額預計值總和不低于35萬元,求一個地區開設加盟店個數的所有可能取值;(3)小趙與小王都準備加入該公司的加盟店,根據公司規定,他們只能分別從其他五個地區(加盟店都不少于2個)中隨機選一個地區加入,求他們選取的地區相同的概率.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】根據兩條直線垂直的條件列方程,解方程求得的值.【詳解】由于直線與直線垂直,所以,解得.故選:A2、C【解析】由題意可得,拋物線的焦點,準線方程為過點作垂直于準線,為垂足,則由拋物線的定義可得,則,為銳角∴當最小時,最小,則當和拋物線相切時,最小設切點,由的導數為,則的斜率為.∴,則.∴,∴故選C點睛:本題主要考查拋物線的定義和幾何性質,與焦點、準線有關的問題一般情況下都與拋物線的定義有關,解決這類問題一定要注意點到焦點的距離與點到準線的距離的轉化,這樣可利用三角形相似,直角三角形中的銳角三角函數或是平行線段比例關系可求得距離弦長以及相關的最值等問題.3、C【解析】根據雙曲線的漸近線方程的特點,結合虛軸長的定義進行求解即可.【詳解】因為雙曲線=1的一條漸近線方程為x-4y=0,所以,因此該雙曲線的虛軸長為,故選:C4、D【解析】由題意轉化為,恒成立,參變分離后轉化為,求函數的最大值,即可求解.【詳解】函數的定義域是,,若函數在定義域內單調遞減,即在恒成立,所以,恒成立,即設,,當時,函數取得最大值1,所以.故選:D5、D【解析】根據直線和直線,直線和平面的位置關系依次判斷每一個選項得到答案.【詳解】若,則平行于過的平面與的交線,當時,,則存在無數條直線,使得,A正確;若,垂直于平面中的所有直線,則存在無數條直線,使得,B正確;若存在無數條直線,使得,,,則,C正確;當時,存在無數條直線,使得,D錯誤.故選:D.6、C【解析】根據逆否命題的定義可判斷A;根據否命題的定義可判斷B;求出、,根據充分條件和必要條件的概念可以判斷C;解出不等式,根據充分條件和必要條件的概念可判斷D.【詳解】命題“若,則”的逆否命題為“若,則”,故A正確;命題“若,則”的否命題為“若,則”,故B正確;若命題p:或;命題q:或,則:-1≤x≤1是:-2≤x≤1的充分不必要條件,故C錯誤;或x<1,故“”是“”的充分不必要條件,故D正確.故選:C.7、D【解析】以正方體為載體說明即可.【詳解】如下圖所示的正方體:和是異面直線,,;和是異面直線,,與是異面直線.所以兩直線與是異面直線,,則的位置關系是相交或異面.故選:D8、A【解析】判斷直線恒過定點,可知定點在圓內,即可判斷直線與圓的位置關系.【詳解】由可知,即該圓的圓心坐標為,半徑為,由可知,則該直線恒過定點,將點代入圓的方程可得,則點在圓內,則直線與圓的位置關系為相交.故選:.9、C【解析】由題意可知圖中每90°的圓弧半徑符合斐波那契數1,1,2,3,5,8,…,從而可求出下一段圓弧的半徑為13,由于每一個圓弧為四分之一圓,從而可求出下一段圓弧所以圓的圓心,進而可得其方程【詳解】解:由題意可知圖中每90°的圓弧半徑符合斐波那契數1,1,2,3,5,8,…,從而可求出下一段圓弧的半徑為13,由題意可知下一段圓弧過點,因為每一段圓弧的圓心角都為90°,所以下一段圓弧所在圓的圓心與點的連線平行于軸,因為下一段圓弧半徑為13,所以所求圓的圓心為,所以所求圓的方程為,故選:C10、B【解析】根據等比數列的性質計算.【詳解】由等比數列的性質可知,且等比數列奇數項的符號相同,所以,即.故選:B11、A【解析】由同角公式求出,根據三角形面積公式求出,根據余弦定理求出,根據正弦定理求出.【詳解】因為,所以,因為,的面積為10,所以,故,從而,解得,由正弦定理得:.故選:A.【點睛】本題考查了同角公式,考查了三角形的面積公式,考查了余弦定理,考查了正弦定理,屬于基礎題.12、C【解析】根據集合交集和補集的概念及運算,即可求解.【詳解】由題意,集合,,根據補集的運算,可得,所以.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、16【解析】根據等差數列前項和公式及下標和性質以及通項公式計算可得;【詳解】解:因為,所以,即,所以,所以,所以;故答案為:14、【解析】根據空間向量共線的坐標表示可得出關于的等式,求出的值即可.【詳解】由已知可得,解得.故答案為:.15、##【解析】根據線段為邊作正,得到M在y軸上,求得M的坐標,再由,得到邊的中點坐標,代入雙曲線方程求解.【詳解】以線段為邊作正,則M在y軸上,設,則,因為,所以邊的中點坐標為,因為邊的中點在雙曲線上,所以,因為,所以,即,解得,因為,所以,故答案為:16、【解析】對求導,根據題設有且,即可得目標式的值.【詳解】由題設,且定義域為,則,所以,整理得,又,所以,兩邊取對數有,得:,即.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)1400(元).【解析】(1)根據已知條件即可容易求得函數關系式;(2)根據(1)中所求函數關系式,令,求得函數值即可.【小問1詳解】根據題意,得:當時,;當時,;當時,.即.【小問2詳解】因為,故,故該廠應繳納污水處理費1400元.18、(1);(2)在單調遞減,在單調遞增【解析】(1)求出函數的導數,求出切線的斜率,切點坐標,然后求解切線方程;(2)利用導函數的符號,判斷函數的單調性,求解函數的單調區間即可【詳解】解:(1)由得,所以切線斜率為切點坐標為,所以切線方程為,即;(2),令,得當時,;當時,,∴在單調遞減,在單調遞增19、(1);(2).【解析】(1)利用正弦定理可求得的值,結合角的取值范圍可求得角的值;(2)由三角形的面積公式可求得的值,由已知可得,利用余弦定理可得出關于的等式,即可求得邊的長.【小問1詳解】解:因為,由正弦定理可得,,則,可得,,,因此,.【小問2詳解】解:,可得,因為、、成等差數列,則,由余弦定理可得,解得.20、(1);(2)【解析】(1)根據,通過余弦定理求解.(2)根據,通過正弦定理,把角轉化為邊得,再根據,得.再代入的面積公式求解.【詳解】(1)∵,∴由余弦定理得,又,∴.(2)∵,∴由正弦定理得,∵,∴,又,∴∴面積【點睛】本題主要考查余弦定理和正弦定理的應用,還考查了運算求解的能力,屬于中檔題.21、(Ⅰ)單調遞減區間為;(Ⅱ).【解析】(Ⅰ)求函數的導函數,求的區間即為所求減區間;(Ⅱ)化簡不等式,變形為,即求,令,求的導函數判斷的單調性求出最小值,可求出的范圍.【詳解】(Ⅰ)由題可知.令,得,從而,∴的單調遞減區間為.(Ⅱ)由可得,即當時,恒成立.設,則.令,則當時,.∴當時,單調遞增,,則當時,,單調遞減;當時,,單調遞增.∴,∴.【點睛】思路點睛:在函數中,恒成立問題,可選擇參變分離的方法,分離出參數轉化為或,轉化為求函數的最值求出的范圍.22、(1);(2)5,6,7;(3).【解析】(1)先求得,,進而得到b,a求解;(2)根據題意,由求解;(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論